Abstract:
A method of forming a metal gate diode ESD protection device and the resulting device are provided. Embodiments include forming a metal gate diode including a metal gate on a substrate; forming an n-type cathode on a first side of the metal gate diode; and forming a p-type anode on a second side of the metal gate diode, opposite the first side.
Abstract:
Methods are presented for facilitating fabrication of a semiconductor device, such as a gate-all-around nanowire field-effect transistor. The methods include, for instance: providing at least one stack structure including at least one layer or bump extending above the substrate structure; selectively oxidizing at least a portion of the at least one stack structure to form at least one nanowire extending within the stack structure(s) surrounded by oxidized material of the stack structure(s); and removing the oxidized material from the stack structure(s), exposing the nanowire(s). This selectively oxidizing may include oxidizing an upper portion of the substrate structure, such as an upper portion of one or more fins supporting the stack structure(s) to facilitate full 360° exposure of the nanowire(s). In one embodiment, the stack structure includes one or more diamond-shaped bumps or ridges.
Abstract:
An inverted contact and methods of fabrication are provided. A sacrificial layer is patterned in an inverted trapezoid shape, and oxide is deposited around the pattern. The sacrificial layer is removed, and a metal contact material is deposited, taking an inverted-trapezoid shape. Embodiments of the present invention provide an inverted contact, having a wider base and a narrower top. The wider base provides improved electrical contact to the underlying active area. The narrower top allows for closer placement of adjacent contacts, serving to increase overall circuit density of an integrated circuit.
Abstract:
Approaches for improving overlay performance for an integrated circuit (IC) device are provided. Specifically, the IC device (e.g., a fin field effect transistor (FinFET)) is provided with an oxide layer and a pad layer formed over a substrate, wherein the oxide layer comprises an alignment and overlay mark, an oxide deposited in a set of openings formed through the pad layer and into the substrate, a mandrel layer deposited over the oxide material and the pad layer, and a set of fins patterned in the IC device without etching the alignment and overlay mark. With this approach, the alignment and overlay mark is provided with the fin cut (FC) layer and, therefore, avoids finification.
Abstract:
A method for fabricating a FinFET integrated circuit includes depositing a first polysilicon layer at a first end of a diffusion region and a second polysilicon layer at a second end of the diffusion region; diffusing an n-type material into the diffusion region to form a diffused resistor; and epitaxially growing a silicon material between the first and second polysilicon layers to form fins structures over the diffused resistor and spanning between the first and second polysilicon layers.
Abstract:
Methods for forming a narrow isolation region are disclosed. The narrow isolation region may serve as an extra narrow diffusion break, suitable for use in 3D FinFET technologies. A pad nitride layer is formed over a semiconductor substrate. A cavity is formed in the pad nitride layer. A conformal spacer liner is deposited in the cavity. An anisotropic etch process then forms a trench in the semiconductor substrate. The trench is narrow enough such that a dummy gate completely covers the trench. Epitaxial stressor regions may then be formed adjacent to the dummy gate. The trench is narrow enough such that there is a gap between the epitaxial stressor regions and the trench.
Abstract:
Disclosed herein are various methods of forming replacement gate structures and conductive contacts on semiconductor devices and devices incorporating the same. One exemplary device includes a plurality of gate structures positioned above a semiconducting substrate, at least one sidewall spacer positioned proximate respective sidewalls of the gate structures, and a metal silicide region in a source/drain region of the semiconducting substrate, the metal silicide region extending laterally so as to contact the sidewall spacer positioned proximate each of the gate structures. Furthermore, the device also includes, among other things, a conductive contact positioned between the plurality of gate structures, the conductive contact having a lower portion that conductively contacts the metal silicide region and an upper portion positioned above the lower portion, wherein the lower portion is laterally wider than the upper portion and extends laterally so as to contact the sidewall spacers positioned proximate each of the gate structures.
Abstract:
A method of lithographically cutting a Mx line before the Mx line is lithographically defined by patterning and the resulting 2DSAV device are provided. Embodiments include forming an a-Si dummy metal layer over a SiO2 layer; forming a first softmask stack over the a-Si dummy metal layer; patterning a plurality of vias through the first softmask stack down to the SiO2 layer; removing the first soft mask stack; forming first and second etch stop layers over the a-Si dummy metal layer, the first etch stop layer formed in the plurality of vias; forming a-Si mandrels on the second etch stop layer; forming oxide spacers on opposite sides of each a-Si mandrel; removing the a-Si mandrels; forming a-Si dummy metal lines in the a-Si dummy metal layer below the oxide spacers; and forming a SiOC layer between the a-Si dummy metal lines.
Abstract:
A method for fabricating a finFET integrated circuit includes providing a finFET integrated circuit structure including a fin structure, a replacement metal gate structure having a silicon nitride cap disposed over and in contact with the fin structure, a contact structure including a tungsten material also disposed over and in contact with the fin structure, and an insulating layer disposed over the replacement metal gate structure and the contact structure. The method further includes forming a first opening in the insulating layer over the replacement gate structure and a second opening in the insulating layer over the contact structure. Forming the first and second openings includes exposing the FinFET integrated circuit structure to a single extreme ultraviolet lithography patterning. Still further, the method includes removing a portion of the silicon nitride material of the replacement metal gate structure and forming a metal fill material in the first and second openings.
Abstract:
Approaches for enabling uniform epitaxial (epi) growth in an epi junction area of a semiconductor device (e.g., a fin field effect transistor device) are provided. Specifically, a semiconductor device is provided including a dummy gate and a set of fin field effect transistors (FinFETs) formed over a substrate; a spacer layer formed over the dummy gate and each of the set of FinFETs; and an epi material formed within a set of recesses in the substrate, the set of recesses formed prior to removal of an epi block layer over the dummy gate.