摘要:
Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. In one embodiment, the cluster tool is adapted to perform a track lithography process in which a substrate is coated with a photosensitive material, is then transferred to a stepper/scanner, which exposes the photosensitive material to some form of radiation to form a pattern in the photosensitive material, which is then removed in a developing process completed in the cluster tool. In track lithography type cluster tools, since the chamber processing times tend to be rather short, and the number of processing steps required to complete a typical track system process is large, a significant portion of the time it takes to process a substrate is taken up by the processes of transferring the substrates in a cluster tool between the various processing chambers. In one embodiment of the cluster tool, the cost of ownership is reduced by grouping substrates together and transferring and processing the substrates in groups of two or more to improve system throughput, and reduces the number of moves a robot has to make to transfer a batch of substrates between the processing chambers, thus reducing wear on the robot and increasing system reliability. In one aspect of the invention, the substrate processing sequence and cluster tool are designed so that the substrate transferring steps performed during the processing sequence are only made to chambers that will perform the next processing step in the processing sequence. Embodiments also provide for a method and apparatus that are used to improve the coater chamber, the developer chamber, the post exposure bake chamber, the chill chamber, and the bake chamber process results. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.
摘要:
A method of processing a substrate 30 comprises exposing the substrate 30 to an energized process gas to etch features 67 on the substrate 30 and exposing the substrate 30 to an energized cleaning gas to remove etchant residue 70 and/or remnant resist 60 from the substrate 30. To enhance the cleaning process, the substrate 30 may be treated before, during or after the cleaning process by exposing the substrate 30 to an energized treating gas comprising a halogen species.
摘要:
An electrostatic chuck 20 for holding a substrate 12 in a process chamber, comprises a unitary monolithic structure 25 of monocrystalline ceramic. The monocrystalline monolith has an electrode 45 embedded therein for electrostatically holding the substrate 12 upon application of a voltage thereto. An electrical connector 50 extends through the unitary monolithic structure 25 for supplying a voltage to the electrode 45. In one version, the monolithic structure 25 is made from a single piece of monocrystalline ceramic formed by a melt forming process. In another version, the monolithic structure 25 comprises a plurality of monocrystalline ceramic plates 270 bonded to one another to form the monolithic structure 25. Preferably, the monolithic structure 25 comprises monocrystalline sapphire and the electrode 45 comprises a refractory metal.
摘要:
A process is provided for controlling the slope of the sidewalls of an opening produced in a semiconductor wafer during an etch process. Microwave or radio frequency energy is remotely applied to pre-excite a process gas. Radio frequency energy is also supplied to the process gas within the process chamber. The sidewall slope is varied by varying the ratio of the amount of remote microwave or radio frequency energy supplied and that of the radio frequency energy supplied within the process chamber. The sidewall slope is also shaped by controlling the process gas flow rate and composition, and the pressure within the process chamber. A more vertical, anisotropic etch profile is obtained with increased radio frequency energy and lower process chamber pressure. A more horizontal, isotropic profile is obtained with decreased radio frequency energy and higher process chamber pressure. A narrower etched feature having smaller interlayer and active element contact regions than the corresponding feature size on the overlying photoresist layer may thereby be provided.
摘要:
A microwave-activated plasma process for etching dielectric layers (20) on a substrate (25) with excellent control of the shape and cross-sectional profile of the etched features (40), high etch rates, and good etching uniformity, is described. A process gas comprising (i) fluorocarbon gas (preferably CF.sub.4), (ii) inorganic fluorinated gas (preferably NF.sub.3), and (iii) oxygen, is used. The process gas is introduced into a plasma zone (55) remote from a process zone (60) and microwaves are coupled into the plasma zone (55) to form a microwave-activated plasma. The microwave-activated plasma is introduced into the process zone (60) to etch the dielectric layer (20) on the substrate (25) with excellent control of the shape of the etched features.
摘要:
A plasma reactor has plural dielectric gas injection tubes extending from a gas injection source and through a microwave guide and into the top of the reactor chamber. The semiconductor wafer rests near the bottom of the chamber on a wafer pedestal connected to a bias RF power source which is controlled independently of the microwave source coupled to the microwave guide. The microwaves from the waveguide ignite and maintain a plasma in each of the tubes. Gas flow through the tubes carries the plasmas in all the tubes into the chamber and into contact with the wafer surface.
摘要:
A process for producing a strip removes photoresist and extraneous deposits of polymer residue on the top surface and sidewalls of a post-metal etch wafer. The photoresist and residue are processed simultaneously by a chemical mechanism comprising reactive species derived from a microwave-excited fluorine-containing downstream gas, and a physical mechanism comprising ion bombardment that results from a radio frequency excited plasma and accompanying wafer self bias. A vacuum pump draws stripped photoresist and residues from the surface of the wafer and exhausts them from the chamber.
摘要:
An improved plasma applicator uses a double-walled sapphire sleeve assembly to provide a high efficiency cooling mechanism that is adapted for use with high power applications and aggressive plasma chemistries in the generation of a plasma. Plasma contained within a highly thermally emissive first sapphire member heats the member, causing it to radiate thermal energy. The radiated thermal energy crosses a narrow gap and passes through an infrared-transparent second sapphire member. An infrared-absorbing coolant fluid that exhibits negligible microwave absorption is flowed in a second gap between the second sapphire member and a third member and absorbs most of the infrared radiation over the fluid's bulk. The use of a bulk fluid optimizes the cooling of the plasma to reduce ion and electron density and maximize reactive species output from the applicator to a vacuum process chamber.
摘要:
An improved low-volume gas distribution assembly for a chemical downstream etch tool includes a focusing collar positioned within a process chamber and having a depending shroud in close proximity to a wafer chuck. An apertured gas delivery conduit rests on channels formed in slanted sides of a central tube of the focusing collar. The apertures in the gas delivery conduit are patterned and dimensioned to provide substantially uniform distribution of a process gas over the upper surface of the workpiece. The central tube is sealed with a cover plate and the process chamber is covered with a chamber lid.
摘要:
A substrate processing apparatus for heating a substrate is provided. The substrate processing apparatus can include a top and bottom planar member. A heater layer can be disposed between the top and the bottom planar member and held in place by evacuating a region between the two planar members. The heater layer can be made of alternating insulating and conducting layers with heater elements formed on the conducting layers in predetermined pattern.