Abstract:
A method for producing a protective structure may include: providing a semiconductor base substrate with a doping of a first conductivity type; producing a first epitaxial layer on the substrate; implanting a dopant of a second conductivity type in a delimited implantation region of the first epitaxial layer; applying a second epitaxial layer with a doping of the second conductivity type on the first epitaxial layer; forming an insulation zone in the second epitaxial layer, such that the second epitaxial layer is subdivided into first and second regions; producing a first dopant zone with a doping of the first conductivity type in the first region above the implantation region; producing a second dopant zone with a doping of the second conductivity type in the second region; outdiffusing the dopant from the implantation region to form a buried layer at the junction between the first epitaxial layer and the first region.
Abstract:
A protective structure may include: a semiconductor substrate having a doping of a first conductivity type; a semiconductor layer having a doping of a second conductivity type arranged at a surface of the semiconductor substrate; a buried layer having a doping of the second conductivity type arranged in a first region of the semiconductor layer and at the junction between the semiconductor layer and the semiconductor substrate; a first dopant zone having a doping of the first conductivity type arranged in the first region of the semiconductor layer above the buried layer; a second dopant zone having a doping of the second conductivity type arranged in a second region of the semiconductor layer; an electrical insulation arranged between the first region and the second region of the semiconductor layer; and a common connection device for the first dopant zone and the second dopant zone.
Abstract:
In one embodiment, a method of forming a semiconductor device includes forming a first inductor coil within and/or over a substrate. The first inductor coil is formed adjacent a top side of the substrate. First trenches are formed within the substrate adjacent the first inductor coil. The first trenches are filled at least partially with a magnetic fill material. At least a first portion of the substrate underlying the first inductor coil is thinned. A backside magnetic layer is formed under the first portion of the substrate. The backside magnetic layer and the magnetic fill material form at least a part of a magnetic core region of the first inductor coil.
Abstract:
A method of fabricating a semiconductor device includes: epitaxially growing a multilayer Group-III nitride structure on a first surface of a substrate; removing portions of the multilayer structure to form a mesa arranged on the first surface; applying insulating material to the first surface of the substrate so that side faces of the mesa are embedded in the insulating material; forming an electrode on a top surface of the mesa; forming a via in the insulating material that extends from the top surface of the insulating material to the first surface of the substrate; inserting conductive material into the via to form a conductive via; applying an electrically conductive redistribution structure to the upper surface and electrically connecting the conductive via to the electrode; and successively removing portions of a second surface of the substrate, to expose the insulating material and form a worked second surface including the insulating material.
Abstract:
A method for manufacturing a MEMS device is disclosed. Moreover a MEMS device and a module including a MEMS device are disclosed. An embodiment includes a method for manufacturing MEMS devices includes forming a MEMS stack over a first main surface of a substrate, forming a polymer layer over a second main surface of the substrate and forming a first opening in the polymer layer and the substrate such that the first opening abuts the MEMS stack.
Abstract:
In accordance with an embodiment, an RF module includes a bulk semiconductor substrate with at least one integrated RF component integrated in a first main surface region of the bulk semiconductor substrate; an insulator structure surrounding a side surface region of the bulk semiconductor substrate; a wiring layer stack including at least one structured metallization layer embedded into an insulation material, the wiring layer stack being arranged on the first main surface region of the bulk semiconductor substrate and a first main surface region of the insulator structure; and a carrier structure at a second main surface region of the insulator structure, wherein the carrier structure and the insulator structure include different materials.
Abstract:
In one embodiment, an inductor has a substrate, a conductor disposed above the substrate and a seamless ferromagnetic material surrounding at least a first portion of the conductor.
Abstract:
An arrangement is provided. The arrangement may include: a substrate having a front side and a back side, a die region within the substrate, a multi-purpose layer defining a back side of the die region, and an etch stop layer disposed over the multi-purpose layer between the multi-purpose layer and the back side of the substrate. The multi-purpose layer may be formed of an ohmic material, and the etch stop layer may be of a first conductivity type of a first doping concentration.
Abstract:
A method for manufacturing a MEMS device is disclosed. Moreover a MEMS device and a module including a MEMS device are disclosed. An embodiment includes a method for manufacturing MEMS devices includes forming a MEMS stack on a first main surface of a substrate, forming a polymer layer on a second main surface of the substrate and forming a first opening in the polymer layer and the substrate such that the first opening abuts the MEMS stack.
Abstract:
An arrangement is provided. The arrangement may include: a die including at least one electronic component and a first terminal on a first side of the die and a second terminal on a second side of the die opposite the first side, wherein the first side being the main processing side of the die, and the die further including at least a third terminal on the second side; a first electrically conductive structure providing current flow from the third terminal on second side of the die to the first side through the die; a second electrically conductive structure on the first side of the die laterally coupling the second terminal with the first electrically conductive structure; and an encapsulation material disposed at least over the first side of the die covering the first terminal and the second electrically conductive structure.