Abstract:
Described is a UE to communicate with an eNB on a network, the UE comprising: an antenna to receive messaging from eNB indicating switching to 256-QAM scheme from an existing non-256-QAM scheme; and a table component for storing soft channel bits based on Nsoft such that the number and value of the soft channel bits for using the 256-QAM scheme is substantially equal to the number and value of the soft channel bits when the UE is not using the 256-QAM scheme. Described is an eNB comprising: an antenna to transmit messaging to a UE indicating switching to 256-QAM scheme from an existing non-256-QAM scheme; and an encoder to encode data using memory usage size based on Nsoft such that the number and value of the Nsoft for using the 256-QAM scheme is substantially equal to the number and value of the Nsoft when the eNB is not using the 256-QAM scheme.
Abstract:
Communication signals using a first and a second frequency band in a wireless network is described herein. The first frequency band may be associated with a first beamwidth while the second frequency band may be associated with a second beamwidth. An apparatus may include receiver circuitry arranged to receive first signals in a first frequency band associated with a first beamwidth and second signals in a second frequency band associated with a second beamwidth, the first signals comprising a frame synchronization parameter and the second signals comprising frame alignment signals. The apparatus may further include processor circuitry coupled to the receiver circuitry, the processor circuitry arranged to activate or deactivate the receiver circuitry to receive the frame alignment signals based on the frame synchronization parameter. Other embodiments may be described and/or claimed.
Abstract:
Coordinated Multipoint (CoMP) involves multiple transmission points or cells coordinating their individual transmissions so that a target user equipment (UE) experiences enhanced signal reception and/or reduced interference. In order to optimally implement downlink CoMP, a serving cell needs to obtain channel state information (CSI) for the downlink channels from the multiple transmission points to the UE. This disclosure deals with radio resource control (RRC) signaling for configuring the UE to obtain and report CSI for those downlink channels.
Abstract:
Embodiments herein describe apparatuses, systems, and methods for signaling to support downlink coordinated multipoint (CoMP) communications with a user equipment (UE) in a wireless communication network. In embodiments, the UE may be configured with a plurality of channel state information (CSI) processes (e.g., via radio resource control (RRC) signaling) to use for providing CSI feedback to an evolved Node B (eNB) to support downlink CoMP communications. The UE may be configured with a plurality of sets of CSI processes. The UE may further receive a downlink control information (DCI) message from the eNB that indicates one of the configured sets of CSI processes on which the UE is to provide CSI feedback to the UE. The UE may generate the CSI feedback for the indicated set of CSI processes, and transmit the CSI feedback to the eNB in a CSI report.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of inter-node communication. For example, a first node may communicate with a second node, e.g., via a backhaul link, one or more messages including a restriction recommendation and/or a restriction setting, for example, a precoding restriction, a Relative Narrowband TX Power indication (RNTP) setting, and/or a Relative Wideband Transmit Power (RWTP) setting.
Abstract:
Systems and techniques for wireless device-to-device (D2D) communication are provided herein. A D2D group identifier may be included in wireless transmissions within D2D groups. D2D interference mitigation processes may be initiated when a D2D group identifier is detected by a wireless device outside the D2D group.
Abstract:
Systems and methods provide channel state information feedback in a multiple-input multiple-output (MIMO) system. A method quantizes a pre-coding matrix indicator (PMI) and feeds it back from a user equipment (UE) to an evolved Node B (eNodeB). The method may use codebooks for vector quantization of optimal horizontal direction and a scalar quantizer to quantize an optimal vertical direction from the eNodeB to a selected UE.
Abstract:
Various embodiments herein are directed to set physical downlink shared channel (PDSCH) default beam behavior for single transmission-reception point (TRP), single downlink control information (DCI) multi-TRP and multi-DCI multi-TRP operation, as well as physical downlink control channel (PDCCH) prioritization based on quasi-colocation (QCL) Type-D for multi-panel reception and single panel reception.
Abstract:
Methods, systems, and storage media are described for beam management for higher-frequency systems, such as, for example, those above 52.6 GHz. Other embodiments may be described and/or claimed.
Abstract:
A user equipment (UE) configured for operation in a sixth generation (6G) network may perform a random access channel (RACH) procedure with a generation node B (gNB). The UE may encode a physical random access channel (PRACH) preamble for transmission in a PRACH occasion (RO) For carrier frequencies above 52.6 GHz, the UE may determine a Radio Network Temporary Identifier (RNTI) (i.e., either a RA-RNTI or a MsgB-RNTI) based on an index of the PRACH occasion RO index. The UE may also decode a response from the gNB that includes the RNTI. The UE may determine the RNTI based on the RO index in a time domain and the RO index in a frequency domain.