摘要:
Disclosed is a method for manufacturing a semiconductor device, comprising forming a low dielectric constant insulating film having a porous structure above a semiconductor substrate, forming a recess in the low dielectric constant insulating film, providing a burying insulating film above the low dielectric constant insulating film having the recess and in the recess, removing a the burying insulating film provided in the recess, thereby opening the recess, and burying conductive material in the recess, forming a conductive portion.
摘要:
Disclosed is a method of manufacturing a semiconductor device comprising preparing a workpiece, which has a first insulating film containing carbon and hydrogen, and a copper wiring, and reducing an oxide formed on a surface of the copper wiring by using plasma with the workpiece cooled.
摘要:
There is provided a CVD apparatus and a cleaning method which can precisely perform cleaning at a high speed, in order to increase the throughput of a CVD apparatus. A film formation gas (e.g., SiH.sub.4 and O.sub.2 gases) is introduced from a source gas supply pipe into a chamber to form a silicon oxide film (SiO.sub.2) on a wafer placed on a susceptor by using a plasma or the like. A thin film (SiO.sub.2) mainly consisting of silicon and oxygen, an imperfect oxide film of silicon, or the like also attaches to a wall surface and the respective surfaces of a window plate, a vacuum seal portion, the susceptor, an electrode, an insulator, an exhaust pipe, and the like in the chamber. An HF-based gas supply system for a cleaning etching gas is arranged to clean the interior of the chamber of the CVD apparatus. Particularly, a film formed with a source gas of Si.sub.x H.sub.2x+2 (x=1, 2, 3) and O.sub.2 is more perfect than an imperfect oxide film (e.g., TEOS) formed with an organic silicon source gas, so that bonding is strong, and the etching rate decreases in plasma cleaning and the like. Cleaning with the HF gas according to this invention is very effective.
摘要:
The present invention provides a method of manufacturing a semiconductor device, including the steps of forming a metal oxide film made of a metal oxide having a decrease in standard free energy smaller than a decrease in standard free energy of hydrogen oxide or of carbon oxide, on an insulating film formed on a semiconductor substrate, forming a metal oxide film pattern by subjecting a treatment to the metal oxide film, and converting said metal oxide pattern into at least one of an electrode and a wiring made of a metal which is a main component constituting the metal oxide, by reducing the metal oxide film pattern at a temperature of 80.degree. to 500.degree. C.
摘要:
Systems and methods are presented for filling an opening with material of a high integrity. A material having properties in a first physical state suitable for formation of a hard mask layer and in a second physical state having properties facilitating removal of the former hard mask layer is utilized. Utilizing the material as a mask layer and subsequently removing the material enables a number of mask layers to be minimized in a subsequent filling operation (e.g., metallization). Material amenable to being in a first physical state and a second physical state is an optically reactive material. The optically reactive dielectric can comprise an element or compound which can act as an agent/catalyst in the optical conversion process along with any element or compound which can act as an accelerator for the optical reaction. Conversion can be brought about by exposure to electromagnetic radiation and/or application of thermal energy.
摘要:
Semiconductors devices and methods of making semiconductor devices are provided. According to one embodiment, a semiconductor device can include a p-type field effect transistor area having an active region with an epitaxial layer grown thereupon and an isolation feature adjacent to the active region. A height of the isolation feature equals or exceeds a height of an interface between the epitaxial layer and the active region. More particularly, a height of the isolation feature in the corner of a junction between the isolation feature and the action region equals or exceeds the height to the interface between the epitaxial layer and the active region.
摘要:
A method for fabricating a semiconductor device, includes forming a porous dielectric film above a substrate using a porous insulating material, forming an opening in the porous dielectric film, repairing film quality of the porous dielectric film on a surface of the opening by feeding a predetermined gas replacing a Si—OH group to the opening, and performing pore sealing of the surface of the opening using the same predetermined gas as that used for film quality repairs after repairing the film quality.
摘要:
A method of producing a semiconductor device having a plurality of wiring layers forms a first interlayer-insulating film, forms a plurality of grooves for wiring in the first interlayer-insulating film, fills metallic films in the grooves to form wirings, etches the first interlayer-insulating film with the wirings as a mask and removes the interlayer-insulating film between the wirings to provide grooves to be filled, and fills a second interlayer-insulating film made of a material of low dielectric constant in the grooves to be filled.
摘要:
A manufacturing method of a semiconductor device, includes forming a porous organo-siloxane film containing a porogen component having carbon as a main component above a semiconductor substrate, forming an upper-side insulating film having at least one of film density and film composition different from that of the porous organo-siloxane film on the porous organo-siloxane film, and applying at least one of an electron beam and an ultraviolet ray to the porous organo-siloxane film and upper-side insulating film to cause polymerization reaction of the porogen component in the porous organo-siloxane film.
摘要:
The present invention intends to form multilayer interconnects without deteriorating the advantage of an organosiloxane film (an interlayer dielectric), i.e., the low dielectric constant. According to the present invention, an organosiloxane film, a silicon nitride film, an inorganic SOG film, and a photoresist pattern are formed on a first metal layer, in series. The inorganic SOG film is then etched with use of the photoresist pattern as a mask to transfer the photoresist pattern to the inorganic SOG film. The photoresist pattern is then removed by oxygen plasma treatment with use of the silicon nitride film as a protection mask for protecting the organosiloxane film. Subsequently thereto, the silicon nitride film and the organosiloxane film are etched with use of the inorganic SOG film to form a contact hole reaching the first metal layer. After removing the inorganic SOG film, a second metal layer is formed to contact with the first metal layer through the contact hole.