摘要:
A domain wall motion type MRAM has: a magnetic recording layer 10 being a ferromagnetic layer having perpendicular magnetic anisotropy; a pair of current supply terminals 14a and 14b connected to the magnetic recording layer 10 for supplying a current to the magnetic recording layer 10; and an anti-ferromagnetic layer 45 being in contact with a first region R1 of the magnetic recording layer 10. The first region R1 includes a part of a current supply region RA of the magnetic recording layer 10 that is between the pair of current supply terminals 14a and 14b.
摘要:
A magnetic memory according to the present invention has: a first underlayer; a second underlayer so formed on the first underlayer as to be in contact with the first underlayer; and a data storage layer so formed on the second underlayer as to be in contact with the second underlayer. The data storage layer is made of a ferromagnetic material having perpendicular magnetic anisotropy. A magnetization state of the data storage layer is changed by current driven domain wall motion.
摘要:
A domain wall motion type MRAM has: a magnetic recording layer 10 being a ferromagnetic layer having perpendicular magnetic anisotropy; a pair of current supply terminals 14a and 14b connected to the magnetic recording layer 10 for supplying a current to the magnetic recording layer 10; and an anti-ferromagnetic layer 45 being in contact with a first region R1 of the magnetic recording layer 10. The first region R1 includes a part of a current supply region RA of the magnetic recording layer 10 that is between the pair of current supply terminals 14a and 14b.
摘要:
A non-volatile logic circuit includes an input section, a control section and an output section. The input section has perpendicular magnetic anisotropy and has a ferromagnetic layer whose magnetization state is changeable. The control section includes a ferromagnetic layer. The output section is provided in a neighborhood of the input section and the control section and includes a magnetic tunnel junction element whose magnetization state is changeable. The magnetization state of the input section is changed based on the magnetization state. A magnetization state of the magnetic tunnel junction element of the output section which state is changed based on the magnetization state of the ferromagnetic material of the control section and the magnetization state of the ferromagnetic material of the input section.
摘要:
The present invention provides a new data writing method for an MRAM which can suppress deterioration of a tunnel barrier layer.A magnetic memory cell 1 has a magnetic recording layer 10 and a pinned layer 30 connected to the magnetic recording layer 10 through a non-magnetic layer 20. The magnetic recording layer 10 includes a magnetization switching region 13, a first magnetization fixed region 11 and a second magnetization fixed region 12. The magnetization switching region 13 has reversible magnetization and faces the pinned layer 30. The first magnetization fixed region 11 is connected to a first boundary B1 of the magnetization switching region 13 and its magnetization direction is fixed to a first direction. The second magnetization fixed region 12 is connected to a second boundary B2 of the magnetization switching region 13 and its magnetization direction is fixed to a second direction. Both of the first direction and the second direction are toward the magnetization switching region 13 or away from the magnetization switching region 13.
摘要:
A magnetoresistive effect element of the present invention includes: a domain wall motion layer, a spacer layer and a reference layer. The domain wall motion layer is made of ferromagnetic material with perpendicular magnetic anisotropy. The spacer layer is formed on the domain wall motion layer and made of non-magnetic material. The reference layer is formed on the spacer layer and made of ferromagnetic material, magnetization of the reference layer being fixed. The domain wall motion layer includes at least one domain wall, and stores data corresponding to a position of the domain wall. An anisotropy magnetic field of the domain wall motion layer is larger than a value in which the domain wall motion layer can hold the perpendicular magnetic anisotropy, and smaller than an essential value of an anisotropy magnetic field of the ferromagnetic material of the domain wall motion layer.
摘要:
A magnetoresistive effect element of the present invention includes: a domain wall motion layer, a spacer layer and a reference layer. The domain wall motion layer is made of ferromagnetic material with perpendicular magnetic anisotropy. The spacer layer is formed on the domain wall motion layer and made of non-magnetic material. The reference layer is formed on the spacer layer and made of ferromagnetic material, magnetization of the reference layer being fixed. The domain wall motion layer includes at least one domain wall, and stores data corresponding to a position of the domain wall. An anisotropy magnetic field of the domain wall motion layer is larger than a value in which the domain wall motion layer can hold the perpendicular magnetic anisotropy, and smaller than an essential value of an anisotropy magnetic field of the ferromagnetic material of the domain wall motion layer.
摘要:
The present invention provides a new data writing method for an MRAM which can suppress deterioration of a tunnel barrier layer.A magnetic memory cell 1 has a magnetic recording layer 10 and a pinned layer 30 connected to the magnetic recording layer 10 through a non-magnetic layer 20. The magnetic recording layer 10 includes a magnetization switching region 13, a first magnetization fixed region 11 and a second magnetization fixed region 12. The magnetization switching region 13 has reversible magnetization and faces the pinned layer 30. The first magnetization fixed region 11 is connected to a first boundary B1 of the magnetization switching region 13 and its magnetization direction is fixed to a first direction. The second magnetization fixed region 12 is connected to a second boundary B2 of the magnetization switching region 13 and its magnetization direction is fixed to a second direction. Both of the first direction and the second direction are toward the magnetization switching region 13 or away from the magnetization switching region 13.
摘要:
A magneto-resistance effect head is provided with a lower conductive layer which is provided with a recessed portion, and a vertical bias layer is provided in the recessed portion. A free layer is provided on the lower conductive layer. On the free layer, layered in the following order are the non-magnetic layer, the fixed layer, the fixing layer, and the upper layer so as not to be placed immediately above the vertical bias layer. The non-magnetic layer, the fixed layer, the fixing layer, and the upper layer are buried in an insulation layer. Furthermore, an upper conductive layer is provided on the upper layer and the insulation layer. In the direction of the magnetic field applied by the vertical bias layer, the free layer is made greater in length than the fixed layer and the free layer is disposed in proximity to the vertical bias layer with the distance between the fixed layer and the vertical bias layer remaining unchanged.
摘要:
A magneto-resistance effect head is provided with a lower conductive layer which is provided with a recessed portion, and a vertical bias layer is provided in the recessed portion. A free layer is provided on the lower conductive layer. On the free layer, layered in the following order are the non-magnetic layer, the fixed layer, the fixing layer, and the upper layer so as not to be placed immediately above the vertical bias layer. The non-magnetic layer, the fixed layer, the fixing layer, and the upper layer are buried in an insulation layer. Furthermore, an upper conductive layer is provided on the upper layer and the insulation layer. In the direction of the magnetic field applied by the vertical bias layer, the free layer is made greater in length than the fixed layer and the free layer is disposed in proximity to the vertical bias layer with the distance between the fixed layer and the vertical bias layer remaining unchanged.