Abstract:
Disclosed are apparatuses and methods for performing atomic layer etching. A method may include modifying one or more surface layers of material on the substrate and exposing the one or more modified surface layers on the substrate to an electron source thereby removing, without using a plasma, the one or more modified surface layers on the substrate. An apparatus may include a processing chamber, a process gas unit, an electron source, and a controller with instructions configured to cause the process gas unit to flow a first process gas to a substrate in a chamber interior, the first process gas is configured to modify one or more layers of material on the substrate, and to cause the electron source to generate electrons and expose the one or more modified surface layers on the substrate to the electrons, the one or more modified surface layers being removed, without using a plasma.
Abstract:
A method for performing atomic layer etching (ALE) on a substrate, including the following method operations: performing a surface modification operation on a surface of the substrate, the surface modification operation configured to convert at least one monolayer of the substrate surface to a modified layer; performing a removal operation on the substrate surface, to remove the modified layer from the substrate surface, wherein removing the modified layer includes exposing the substrate surface to a metal complex, such that a ligand exchange reaction occurs between the metal complex and converted species of the modified layer; performing, following the removal operation, a plasma treatment on the substrate surface, the plasma treatment configured to remove residues formed from the exposure of the substrate surface to the metal complex, wherein the residues are volatilized by the plasma treatment; repeating the foregoing operations until a predefined thickness has been etched from the substrate surface.
Abstract:
A method for performing atomic layer etching (ALE) on a substrate is provided, including the following operations: performing a surface modification operation on a substrate surface, the surface modification operation configured to convert at least one monolayer of the substrate surface to a modified layer, wherein a bias voltage is applied during the surface modification operation, the bias voltage configured to control a depth of the substrate surface that is converted by the surface modification operation; performing a removal operation on the substrate surface, the removal operation configured to remove at least a portion of the modified layer from the substrate surface, wherein removing the portion of the modified layer includes applying thermal energy to effect desorption of the portion of the modified layer. A plasma treatment can be performed to remove residues from the substrate surface following the removal operation.
Abstract:
A method for performing atomic layer etching (ALE) on a substrate is provided, including the following operations: performing a surface modification operation on a substrate surface, the surface modification operation configured to convert at least one monolayer of the substrate surface to a modified layer, wherein a bias voltage is applied during the surface modification operation, the bias voltage configured to control a depth of the substrate surface that is converted by the surface modification operation; performing a removal operation on the substrate surface, the removal operation configured to remove at least a portion of the modified layer from the substrate surface, wherein removing the portion of the modified layer is effected via a ligand exchange reaction that is configured to volatilize the portion of the modified layer. A plasma treatment can be performed to remove residues from the substrate surface following the removal operation.
Abstract:
Disclosed are methods of adjusting the emission of vacuum ultraviolet (VUV) radiation from a plasma in a semiconductor processing chamber. The methods may include generating a plasma in the processing chamber which includes a VUV-emitter gas and a collisional energy absorber gas, and adjusting the emission of VUV radiation from the plasma by altering the concentration ratio of the VUV-emitter gas to collisional energy absorber gas in the plasma. In some embodiments, the VUV-emitter gas may be helium and the collisional energy absorber gas may be neon, and in certain such embodiments, adjusting VUV emission may include flowing helium and/or neon into the processing chamber in a proportion so as to alter the concentration ratio of helium to neon in the plasma. Also disclosed are apparatuses which implement the foregoing methods.
Abstract:
A processing chamber having a chamber housing with a top and sidewalls is provided. The processing chamber has a seal for connecting the sidewalls of the chamber housing to a top of a lower chamber below the processing chamber. A substrate holder is attached to the sidewalls of the chamber housing. Further, a wafer lift ring supported by a side arm extending through the sidewalls has at least three posts each having at least one finger, the top of the fingers defining a first wafer handoff plane. The lower chamber has at least one lowest wafer support that defines a second wafer handoff plane where the height between the first wafer handoff plane and the second wafer handoff plane is not greater than a maximum vertical stroke of a transfer arm that is configured to transfer a wafer from the first wafer handoff plane and the second wafer handoff plane.
Abstract:
A plasma processing system includes a bottom electrode disposed in a chamber. A lower extended electrode is disposed around the bottom electrode. An upper ceramic plate is disposed above the bottom electrode in an opposing relationship. An upper extended electrode is disposed around the upper ceramic plate. A lower process exclusion zone (PEZ) ring is situated between the lower extended electrode and the bottom electrode. An upper PEZ ring is situated between the upper extended electrode and the upper ceramic plate, with the upper PEZ ring having an RF electrode ring embedded therein. The system also includes a first RF generator for generating RF power for the bottom electrode, a second RF generator for generating RF power for the RF electrode ring embedded in the upper PEZ ring, and a controller for transmitting processing instructions. The processing instructions include power settings for the first and second RF generators.
Abstract:
A system and method for processing a substrate in a processing chamber and providing an azimuthally evenly distributed draw on the processing byproducts using a gas pump down source coupled to the processing chamber above the plane of a substrate support within the processing chamber. The process chamber can include an annular plenum disposed between the support surface plane and the chamber top, the plenum including at least one vacuum inlet port coupled to the gas pump down source and a continuous inlet gap proximate to a perimeter of the substrate support, the continuous inlet gap having an inlet gas flow resistance of between about twice and about twenty times an outlet gas flow resistance the at least one vacuum inlet port.
Abstract:
A plasma processing system having a plasma processing chamber configured for processing a substrate is provided. The plasma processing system includes at least an upper electrode and a lower electrode for processing the substrate. The substrate is disposed on the lower electrode during plasma processing, where the upper electrode and the substrate forms a first gap. The plasma processing system also includes an upper electrode peripheral extension (UE-PE). The UE-PE is mechanically coupled to a periphery of the upper electrode, where the UE-PE is configured to be non-coplanar with the upper electrode. The plasma processing system further includes a cover ring. The cover ring is configured to concentrically surround the lower electrode, where the UE-PE and the cover ring forms a second gap.
Abstract:
An edge ring assembly surrounds a substrate support surface in a plasma etching chamber. The edge ring assembly comprises an edge ring and a dielectric spacer ring. The dielectric spacer ring, which surrounds the substrate support surface and which is surrounded by the edge ring in the radial direction, is configured to insulate the edge ring from the baseplate. Incorporation of the edge ring assembly around the substrate support surface can decrease the buildup of polymer at the underside and along the edge of a substrate and increase plasma etching uniformity of the substrate.