摘要:
A focus ring and a plasma processing apparatus capable of improving an in-surface uniformity of a surface and reducing occurrences of deposition on a backside surface of a peripheral portion of a semiconductor wafer compared to a conventional case are provided. Installed in a vacuum chamber is a susceptor for mounting the semiconductor wafer thereon and a focus ring is installed to surround the semiconductor wafer mounted on the susceptor. The focus ring includes an annular lower member made of a dielectric, and an annular upper member made of a conductive material and mounted on the lower member. The upper member includes a flat portion which is an outer peripheral portion having a top surface positioned higher than a surface to be processed of the semiconductor wafer W, and an inclined portion which is an inner peripheral portion inclined inwardly.
摘要:
A plasma processing apparatus includes a process container configured to have a vacuum atmosphere therein. An upper electrode is disposed to face a target substrate placed within the process container. An electric feeder includes a first cylindrical conductive member continuously connected to the upper electrode in an annular direction. The electric feeder is configured to supply a first RF output from a first RF power supply to the upper electrode.
摘要:
When a substrate 30 is to be subjected to a magnetron plasma process, a dipole ring magnet 21 is provided, in which a large number of anisotropic segment magnets 22 are arranged in a ring-like shape around the outer wall of a chamber 1. A magnetic field gradient, wherein the magnetic field strength decreases from the E pole side toward the W pole side in a direction perpendicular to a magnetic field direction B, is formed in a plane perpendicular to the direction of an electric field between a pair of electrodes separated from each other. The anisotropic segment magnets have a first section a including anisotropic segment magnets arranged in the vicinity of a region A located outside an E pole side end of the process substrate with an N pole thereof being directed toward this region, and a second portion b including anisotropic segment magnets arranged with an S pole thereof being directed toward this region, to locally increase the magnetic field strengths of the first and second regions.
摘要:
A plasma processing method comprises the steps of supplying a low-frequency bias to a first electrode carrying a substrate, and supplying a high-frequency power to a second electrode facing the first electrode, wherein the low-frequency bias is supplied to the first electrode in advance of starting plasma by the energy of the high-frequency power, with an electric power sufficient to form an ion-sheath on the surface of the substrate.
摘要:
The magnetron plasma processing apparatus includes a vacuum chamber in which a semiconductor wafer is accommodated. In the chamber, a pair of electrodes are provided to face each other, and the wafer is placed on one electrode. Between a pair of the electrodes, a vertical electric field is formed, and a horizontal magnetic field is formed by the dipole ring magnet to cross perpendicularly to the electric field. The magnetic field has a gradient of the magnetic field intensity such that the intensity is high on the upstream side and is low on the downstream side in the electron-drift direction. Further, the magnetic field is formed such that the intensity is made uniform over a large area including the end portion of the wafer on the upstream side in the electron-drift direction and a region right outside it.
摘要:
A plasma processing system capable of carrying out a uniform processing is provided.According to the present invention, a substantially annular high-frequency antenna 156 of a predetermined number of turns, e.g., 1 turn, is provided in an opening 102b via a first shielding member 160 and a dielectric member 158. The capacitance of a variable capacitor 172 connected to ground is adjusted so that series resonance occurs at the mid point of the high-frequency antenna 156. With this construction, it is possible to form a desired electric field in a plasma producing space to produce a high-density plasma. In addition, a feeding member 126 is formed so that the substantially vertical cross-section thereof has a profile expressed by an exponential function r=f(L). Therefore, it is possible to supply a high-frequency power to an upper electrode without causing the electric breakdown and the damping of the high-frequency power.
摘要:
There is provided a dry etching method which does not contribute to earth anathermal due to the green house effect and which has a good etching characteristics. According to the present invention, the flow rates of Ar, O.sub.2, and C.sub.3 F.sub.6 supplied from gas sources 152, 154 and 156 are regulated by a mass flow controller MFC 146, 148 and 150 and valves 140, 142 and 144, respectively, to be mixed. The mixed gas is introduced onto a wafer W via a gas introducing pipe 138, a gas inlet 134, a space 130 and through holes 124a while the flow ratio of O.sub.2 to C.sub.3 F.sub.6 is set to be 0.1.ltoreq.O.sub.2 /C.sub.3 F.sub.6 .ltoreq.1.0 and the partial pressure of C.sub.3 F.sub.6 is set to be in the range of from 0.5 mTorr to 2.0 mTorr.
摘要翻译:提供了由于温室效应而对地球天然气无贡献并具有良好蚀刻特性的干式蚀刻方法。 根据本发明,由气源152,154和156供应的Ar,O2和C3F6的流量由质量流量控制器MFC 146,148和150以及阀140,142和144分别调节为 混合 通过气体导入管138,气体入口134,空间130和通孔124a将混合气体引入到晶片W上,同时将O 2与C 3 F 6的流量比设定为0.1 / O 2 / C 3 F 6 1.0,C3F6的分压设定在0.5mTorr至2.0mTorr的范围内。
摘要:
An ion source according to the present invention includes a first chamber, including a main chamber having an electron generating arrangement therein, and a sub-chamber communicating with the main chamber through a nozzle, for producing a first plasma by a discharge. A supply is also provided for supplying a first gas for a discharge into the main chamber, as well as an electron extracting arrangement for extracting electrons from the first plasma. Also included are a second chamber for producing a second plasma by discharge excitation of the extracted electrons and ionizing a second gas as a source gas, a further supply for supplying the second gas into the second chamber, and a magnetic field generator for generating a magnetic field for guiding the extracted electrons toward the second chamber. The electron extracting arrangement includes an electrode between the sub-chamber and the second chamber. The electrode has a first hole, formed at a position opposite to the opening of the nozzle, for allowing the extracted electrons to pass therethrough and to move into the second chamber, and second holes, arranged around the first hole, for allowing part of the first gas injected from the nozzle to pass therethrough and to move into the second chamber. Part of the first gas is drawn into the second chamber through the second holes of the electrode, and the density of the first gas passing through the first hole is decreased.
摘要:
An upper electrode and a lower electrode are disposed opposite to each other in a process container configured to be vacuum-exhausted. The upper electrode is connected to a first RF power supply configured to apply a first RF power for plasma generation. The lower electrode is connected to a second RF power supply configured to apply a second RF power for ion attraction. The second RF power supply is provided with a controller preset to control the second RF power supply to operate in a power modulation mode that executes power modulation in predetermined cycles between a first power set to deposit polymers on a predetermined film on a wafer and a second power set to promote etching of the predetermined film on the wafer.
摘要:
Disclosed herein is a table 2 for use in a plasma processing system 1 that includes an electrically conductive member serving as a lower electrode 21 for plasma formation, a lower dielectric layer 22 (first dielectric layer) formed on the electrically conductive member so that it covers the center of the upper surface of the electrically conductive member, serving to make a high-frequency electric field to be applied to plasma via a substrate uniform, and an upper dielectric layer 24 (second dielectric layer) having a relative dielectric constant of 100 or more, formed on the electrically conductive member so that it is in contact at least with the edge of the substrate, in order to prevent a high-frequency current that has propagated along the electrically conductive member face from leaking to the outside of the substrate (wafer W).