Abstract:
A light-emitting diode is provided to include: a transparent substrate having a first surface, a second surface, and a side surface; a first conductive semiconductor layer positioned on the first surface of the transparent substrate; a second conductive semiconductor layer positioned on the first conductive semiconductor layer; an active layer positioned between the first conductive semiconductor layer and the second conductive semiconductor layer; a first pad electrically connected to the first conductive semiconductor layer; and a second pad electrically connected to the second conductive semiconductor layer, wherein the transparent substrate is configured to discharge light generated by the active layer through the second surface of the transparent substrate, and the light-emitting diode has a beam angle of at least 140 degrees or more. Accordingly, a light-emitting diode suitable for a backlight unit or a surface lighting apparatus can be provided.
Abstract:
A light emitting diode (LED) includes a substrate, a first semiconductor layer disposed on the substrate, an active layer disposed on a portion of the first semiconductor layer, a second semiconductor layer disposed on the active layer, a reflection pattern disposed on a portion of the second semiconductor layer, and a first insulating layer including a first portion having a first thickness and a second portion having a second thickness different from the first thickness, in which the first portion is disposed on the reflection pattern or the first semiconductor layer and the second portion is disposed on the second semiconductor layer.
Abstract:
Disclosed are a light emitting diode array on a wafer level and a method of forming the same. The light emitting diode array includes a growth substrate; a plurality of light emitting diodes arranged on the substrate, wherein each of the plurality of light emitting diodes has a first semiconductor layer, an active layer and a second semiconductor layer; and a plurality of upper electrodes arranged on the plurality of light emitting diodes and formed of an identical material, wherein each of the plurality of upper electrodes is electrically connected to the first semiconductor layer of a respective one of the light emitting diodes. At least one of the upper electrodes is electrically connected to the second semiconductor layer of an adjacent one of the light emitting diodes, and another of the upper electrodes is insulated from the second semiconductor layer of an adjacent one of the light emitting diodes. Accordingly, it is possible to provide a light emitting diode array that can be driven under at a high voltage and simplify a forming process thereof.
Abstract:
Disclosed are a light emitting diode (LED), an LED module including the same, and a method of fabricating the same. The light emitting diode includes a first conductive-type semiconductor layer; a second conductive-type semiconductor layer; an active layer interposed between the first conductive-type semiconductor layer and the second conductive-type semiconductor layer; a first electrode pad region electrically connected to the first conductive-type semiconductor layer; a second electrode pad region electrically connected to the second conductive-type semiconductor layer; and a spark gap formed between a first leading end electrically connected to the first electrode pad region and a second leading end electrically connected to the second electrode pad region. The spark gap can achieve electrostatic discharge protection of the light emitting diode.
Abstract:
A light emitting diode includes a first conductivity type semiconductor layer, a mesa disposed on the first conductivity type semiconductor layer, and including an active layer and a second conductivity type semiconductor layer, and a lower insulation layer covering the mesa and at least a portion of the first conductivity type semiconductor layer exposed around the mesa, and having a first opening for allowing electrical connection to the first conductivity type semiconductor layer and a second opening for allowing electrical connection to the second conductivity type semiconductor layer. The active layer generates light having a peak wavelength of about 500 nm or less, and the lower insulation layer includes a distributed Bragg reflector.
Abstract:
A light emitting device including a substrate, first and second light emitting diodes (LEDs) each including first and second semiconductor layers, a first upper electrode disposed on the second LED, electrically connected to the first LED, and insulated from the second semiconductor layer of the first LED, and a second upper electrode disposed on the second LED, electrically connected to the second LED, and insulated from the second semiconductor layer of the second LED, in which a portion of the substrate between the LEDs does not overlap the semiconductor layers, the first upper electrode has a portion electrically connected to the second semiconductor layer of the second LED and covering the first portion and portions of the LEDs, and the second upper electrode has a groove partially enclosing the portion of the first upper electrode in a plan view.
Abstract:
A light emitting device including a substrate, first and second light emitting diodes (LEDs) each including first and second semiconductor layers, a first upper electrode disposed on the second LED, electrically connected to the first LED, and insulated from the second semiconductor layer of the first LED, and a second upper electrode disposed on the second LED, electrically connected to the second LED, and insulated from the second semiconductor layer of the second LED, in which a portion of the substrate between the LEDs does not overlap the semiconductor layers, the first upper electrode has a portion electrically connected to the second semiconductor layer of the second LED and covering the first portion and portions of the LEDs, and the second upper electrode has a groove partially enclosing the portion of the first upper electrode in a plan view.
Abstract:
A light emitting diode is provided to include a first conductive-type semiconductor layer; a mesa including a second conductive-type semiconductor layer disposed on the first conductive-type semiconductor layer and an active layer interposed between the first and the second conductive-type semiconductor layers; and a first electrode disposed on the mesa, wherein the first conductive-type semiconductor layer includes a first contact region disposed around the mesa along an outer periphery of the first conductive-type semiconductor layer; and a second contact region at least partially surrounded by the mesa, the first electrode is electrically connected to at least a portion of the first contact region and at least a portion of the second contact region, and a linewidth of an adjoining region between the first contact region and the first electrode is greater than the linewidth of an adjoining region between the second contact region and the first electrode.
Abstract:
A light emitting device including a substrate, first and second light emitting diodes disposed thereon and including a first semiconductor layer, an active layer, and a second semiconductor layer, a first upper electrode electrically connected to the first semiconductor layer and insulated from the second semiconductor layer of the first light emitting diode, a second upper electrode electrically connected to the first semiconductor layer and insulated from the second semiconductor layer of the second light emitting diode, in which the first and second light emitting diodes are spaced apart from each other to expose the substrate, the first upper electrode has a protrusion electrically connected to the second semiconductor layer of the second light emitting diode and covering portions of the exposed substrate, the first light emitting diode, and the second light emitting diode, and the second upper electrode has a groove.
Abstract:
Disclosed are an LED and an LED module. The LED includes: a first conductivity type semiconductor layer; a mesa disposed over the first conductivity type semiconductor layer and including an active layer and a second conductivity type semiconductor layer; a first ohmic-contact structure in contact with the first conductivity type semiconductor layer; a second ohmic-contact structure in contact with the second conductivity type semiconductor layer; a lower insulating layer at least partially covering the mesa and the first conductivity type semiconductor layer and disposed to form a first opening part at least partially exposing the first ohmic-contact structure and a second opening part at least partially exposing the second ohmic-contact structure; and a current distributing layer connected to the first ohmic-contact structure at least partially exposed by the first opening part and disposed to form a third opening part at least partially exposing the second opening part.