Abstract:
Apparatus for communication across a capacitively coupled channel are disclosed herein. An example circuit includes a first plate substantially parallel to a substrate, thereby forming a first capacitance intermediate the first plate and the substrate. A second plate is substantially parallel to the substrate and the first plate, the first plate intermediate the substrate and the second plate. A third plate is substantially parallel to the substrate, thereby forming a second capacitance intermediate the third plate and the substrate. A fourth plate is substantially parallel to the substrate and the third plate, the third plate intermediate the substrate and the fourth plate. An inductor is connected to the first plate and the third plate, the inductor to, in combination with the first capacitance and the second capacitance, form an LC amplifier.
Abstract:
A circuit includes an amplifier having an input that receives an alternating current (AC) waveform and an output that is coupled to a power source via a bias resistor. A bulk acoustic wave (BAW) resonator is coupled in parallel to the bias resistor via the power source and the amplifier output. The BAW resonator and the amplifier output forms a band pass filter to filter the AC waveform received at the amplifier input and to provide a filtered AC waveform at the amplifier output.
Abstract:
Methods and apparatus for performing a high speed phase demodulation scheme using a low bandwidth phase-lock loop are disclosed. An example apparatus includes a low bandwidth phase lock loop to lock to a data signal at a first phase, the data signal capable of oscillating at the first phase or a second phase; and output a first output signal at the first phase and a second output signal at the second phase, the first output signal or the second output signal being utilized in a feedback loop of the low bandwidth phase lock loop. The example apparatus further includes a fast phase change detection circuit coupled to the low bandwidth phase lock loop to determine whether the data signal is oscillating at the first phase or the second phase; when the data signal is oscillating at the first phase, output a first logic value; and when the data signal is oscillating at the second phase, output a second logic value, the output of the fast phase change detection circuit being used to determine whether the first output signal or the second output signal will be utilized in the feedback loop of the low bandwidth phase lock loop.
Abstract:
In described examples, a method of inductive coupled communications includes providing a first resonant tank (first tank) and a second resonant tank (second tank) tuned to essentially the same resonant frequency, each having antenna coils and switches positioned for changing a Q and a bandwidth of their tank. The antenna coils are separated by a distance that provides near-field communications. The first tank is driven to for generating induced oscillations to transmit a predetermined number of carrier frequency cycles providing data. After the predetermined number of cycles, a switch is activated for widening the bandwidth of the first tank. Responsive to the oscillations in the first tank, the second tank begins induced oscillations. Upon detecting a bit associated with the induced oscillations, a switch is activated for widening the bandwidth of the second tank and a receiver circuit receiving an output of the second tank is reset.
Abstract:
Low noise switchable varactors and digital controlled oscillator (DCO) circuitry are presented for creating alternating signals at controlled frequencies, including a first transistor for selectively coupling two capacitors between varactor output nodes when a control signal is in a first state, second and third transistors for selectively coupling first and second internal nodes between the respective capacitors and the first transistor with a third internal node when the control signal is in the first state, and an inverter disconnected from the first and second internal nodes to mitigate phase noise and operable to control the voltage of the third internal node according to the control signal.
Abstract:
In apparatus for die-to-die communication, a first die includes at least a first circuit, and a second die includes at least a second circuit. The first die is separated by a fixed distance from the second die. In response to a signal, the first circuit is configured to induce a current in the second circuit via a magnetic coupling between the first circuit and the second circuit.
Abstract:
A system includes a first digital-to-time converter (DTC) adapted to receive a first DTC code and a first clock signal. The first DTC provides an output clock signal. The system includes a calibration DTC adapted to receive a calibration DTC code and a second clock signal. The calibration DTC provides a calibration output signal. The system includes a latch comparator which provides outputs indicative of which of the output clock signal and the calibration output signal is received first. The system includes an average computation module which provides an average value of the outputs of the latch comparator. The system includes a digital controller adapted to receive the average value. The digital controller provides the DTC code and the calibration DTC code.
Abstract:
A digital-to-time converter (DTC) and methods of calibrating the same reduces or mitigates nonlinearity and thus improves DTC performance. A slope of a voltage signal of the DTC is calibrated using a capacitor and a comparator. Capacitance of the capacitor and/or maximum current of a current source is adjusted to configure the comparator to output a signal during a second phase when a reference voltage signal is at or above a first level and below a second level. Calibrating gain of the DTC includes adjusting a time difference between an output signal of the DTC set at a first digital code value and the output signal of the DTC set at a second digital code value to be one period of a clock signal input to the DTC. Calibrating integral nonlinearity of the DTC includes measuring a time period for each of multiple digital code values of the DTC.
Abstract:
An example integrated circuit die includes: lower level conductor layers, lower level insulator layers between the lower level conductor layers, lower level vias extending vertically through the lower level insulator layers, upper level conductor layers overlying the lower level conductor layers, upper level insulator layers between and surrounding the upper level conductor layers, upper level vias; at least two scribe seals arranged to form a vertical barrier extending vertically from the semiconductor substrate to a passivation layer at an upper surface of the integrated circuit die; and at least one opening extending vertically through one of the at least two scribe seals and extending through: the upper level conductor layers, the upper level via layers, the lower level conductor layers, and the lower level via layers.
Abstract:
An example digital to time converter includes: a first switch having a first terminal, a second terminal, and a first control terminal configured to receive a control signal. A second switch having a third terminal coupled to second terminal, a fourth terminal, and a second control terminal configured to receive a divided clock signal. A third switch having a fifth terminal coupled to the second terminal and the third terminal, a sixth terminal, and a third control terminal configured to receive an inverted version of divided clock signal. A fourth switch having a seventh terminal coupled to the second terminal, an eighth terminal, and a fourth control terminal configured to receive an inverted version of control signal. A fifth switch having a ninth terminal coupled to the eighth terminal and a fifth control terminal configured to receive the inverted divided clock signal. A capacitor coupled to the sixth terminal.