摘要:
A capacitance type acceleration sensor includes a semiconductor substrate, a weight portion supported with the substrate through a spring portion, a movable electrode integrated with the weight portion, and a fixed electrode cantilevered with the substrate. The movable electrode is displaced along with a facing surface of the movable electrode in accordance with acceleration. The facing surface of the movable electrode faces a facing surface of the fixed electrode so as to provide a capacitor. The capacitance of the capacitor changes in accordance with a displacement of the movable electrode so that an outer circuit detects the acceleration as a capacitance change. Each facing surface of the movable and fixed electrodes has a concavity and convexity portion for increasing the capacitance change.
摘要:
A flow sensor, which can detect flow velocity in a wide range including high flow velocity area with simple structure. A flow sensor includes a substrate having a hollow portion; and a thin film structure portion provided above the hollow portion. The thin film structure portion is provided with a heater formed in a center portion, an upper and a lower stream temperature detectors for detecting temperature of the fluid, a fluid thermometer for detecting temperature of the fluid, and thermal couple films provided on the substrate at a portion, where is between the heater and both temperature detectors. According to this structure, the thermal couple films enhance thermal coupling between the heater and the temperature detectors. Accordingly, it can prevent the temperature of the upper stream temperature detector from falling to around the temperature of the fluid, and it can raise a certain flow velocity at which a cooling of the low stream temperature detector due to the flowing fluid exceeds a heating by the heater. Therefore, it can detect flow velocity in a wide range including high flow velocity area.
摘要:
An MISFET type semiconductor sensor, which can avoid deterioration of characteristics, and a method for fabricating same are disclosed. Silicon oxide films and a silicon nitride film are formed on an upper surface of a p-type silicon substrate, and a movable portion is disposed above the silicon nitride film with a predetermined interval interposed therebetween. A movable gate electrode portion exists on a portion of the movable portion and is displaced by acceleration. Fixed electrodes (a source/drain portion) composed of an impurity diffusion layer are formed on the p-type silicon substrate, and a flowing current changes due to a change in a relative position with the movable gate electrode portion due to acceleration. Projections for movable-range restriction use are provided on a lower surface of the movable portion other than the movable gate electrode portion, and form a gap which is narrower than a gap between the p-type silicon substrate and movable gate electrode portion.
摘要:
A method for fabricating a semiconductor sensor wherein deflection of a movable member is disclosed. A silicon oxide film is formed on a silicon substrate, and a movable member composed of polycrystalline silicon is formed on the silicon oxide film by means of a low-pressured chemical vapor deposition process. At this time, silane is caused to flow into an oven, and the supply of silane is stopped when a layer of polycrystalline silicon has been deposited on the silicon substrate, and a first polycrystalline silicon layer is formed. By means of stopping the supply of silane, a silicon oxide layer of a thickness of several angstroms to several tens of angstroms is formed on the first polycrystalline silicon layer by atmosphere O.sub.2. A second polycrystalline silicon layer of a thickness of 1 .mu.m is formed on the silicon oxide layer by means of causing silane to flow into the oven. Patterning by dry etching or the like through a photo-lithographic process is performed to form a movable member. The silicon oxide film below the movable member is then etched.
摘要:
A method of manufacturing an optical device includes: a first step of forming an optical-device forming body that includes a plurality of columnar structures arranged in an arrangement direction on a substrate surface via a trench and an outline structure connected to and containing therein the plurality of columnar structures; a second step of oxidizing the optical-device forming body from a state where the optical-device forming body starts to be oxidized to a state where the columnar structure is oxidized; and a third step in which an unoxidized residual part of the outline structure in the second step is oxidized after the second step so as to form an oxidized body. Furthermore, the third step includes restraining the outline structure from being deformed with respect to at least the arrangement direction of the columnar structures in the third step.
摘要:
A method for manufacturing an optical device having an optical block, through which a light is transmitted, is provided. The method includes steps of: forming a plurality of silicon oxide members, which is disposed on a silicon substrate, wherein the silicon oxide members are arranged in parallel each other by a predetermined clearance between two adjacent silicon oxide members; and pouring a super critical fluid into the clearance so that the clearance is filled with a product formed from a predetermined compound for forming the optical block, wherein the predetermined compound is dissolved in the super critical fluid.
摘要:
A method for manufacturing a physical quantity sensor having a movable portion, a support portion and an optical part is provided. The method includes steps of: etching a silicon substrate so that a movable-portion-to-be-formed portion, a support-portion-to-be-formed portion, and an optical-part-to-be-formed portion having a plurality of columns and trenches are formed; oxidizing the optical-part-to-be-formed portion so that each column changes to a silicon oxide column and the trench is filled with a silicon oxide layer; and removing a part of the movable-portion-to-be-formed portion connecting to the silicon substrate so that the movable portion is separated from the silicon substrate.
摘要:
An acceleration sensor includes: a semiconductor substrate including a support layer and a semiconductor layer, which are stacked in a first direction; a movable electrode and a fixed electrode; and a trench. The movable electrode separately faces the fixed electrode by sandwiching the trench along with a second direction. The trench has a detection distance in the second direction. The movable electrode is movable along with the first direction when acceleration is applied. The movable electrode has a bottom apart from the support layer. The width of the movable electrode along with the second direction is smaller than the width of the fixed electrode. The thickness of the movable electrode along with the first direction is smaller than the thickness of the fixed electrode.
摘要:
A capacitance type acceleration sensor includes a semiconductor substrate, a weight portion supported with the substrate through a spring portion, a movable electrode integrated with the weight portion, and a fixed electrode cantilevered with the substrate. The movable electrode is displaced along with a facing surface of the movable electrode in accordance with acceleration. The facing surface of the movable electrode faces a facing surface of the fixed electrode so as to provide a capacitor. The capacitance of the capacitor changes in accordance with a displacement of the movable electrode so that an outer circuit detects the acceleration as a capacitance change. Each facing surface of the movable and fixed electrodes has a concavity and convexity portion for increasing the capacitance change.
摘要:
An optical device includes: a silicon substrate; a plurality of silicon oxide columns having a rectangular plan shape; and a cavity disposed between the columns. Each column has a lower portion disposed on the substrate. Each column has a width defined as W1. The cavity has a width defined as W2. A ratio of W1/W2 becomes smaller as it goes to the lower portion of the column. A core layer provided by the columns and the cavity can have the thickness equal to or larger than a few dozen μm easily. Therefore, connection loss between a light source and the device is reduced.