Abstract:
A microprocessor includes an architected register having a bit. The microprocessor sets the bit. The microprocessor also includes a fetch unit that fetches encrypted instructions from an instruction cache and decrypts them prior to executing them, in response to the microprocessor setting the bit. The microprocessor saves the value of the bit to a stack in memory and then clears the bit, in response to receiving an interrupt. The fetch unit fetches unencrypted instructions from the instruction cache and executes them without decrypting them, after the microprocessor clears the bit. The microprocessor restores the saved value from the stack in memory to the bit in the architected register, in response to executing a return from interrupt instruction. The fetch unit resumes fetching and decrypting the encrypted instructions, in response to determining that the restored value of the bit is set.
Abstract:
A microprocessor is provided with a method for decrypting encrypted instruction data into plain text instruction data and securely executing the same. The microprocessor includes a master key register file comprising a plurality of master keys. Selection logic circuitry in the microprocessor selects a combination of at least two of the plurality of master keys. Key expansion circuitry in the microprocessor performs mathematical operations on the selected master keys to generate a decryption key having a long effective key length. Instruction decryption circuitry performs an efficient mathematical operation on the encrypted instruction data and the decryption key to decrypt the encrypted instruction data into plain text instruction data.
Abstract:
A method for encrypting a program for subsequent execution by a microprocessor configured to decrypt and execute the encrypted program includes receiving an object file specifying an unencrypted program that includes conventional branch instructions whose target address may be determined pre-run time. The method also includes analyzing the program to obtain chunk information that divides the program into a sequence of chunks each comprising a sequence of instructions and that includes encryption key data associated with each of the chunks. The encryption key data associated with each of the chunks is distinct. The method also includes replacing each of the conventional branch instructions that specifies a target address that is within a different chunk than the chunk in which the conventional branch instruction resides with a branch and switch key instruction. The method also includes encrypting the program based on the chunk information.
Abstract:
An apparatus for generating a decryption key for use to decrypt a block of encrypted instruction data being fetched from an instruction cache in a microprocessor at a fetch address includes a first multiplexer that selects a first key value from a plurality of key values based on a first portion of the fetch address. A second multiplexer selects a second key value from the plurality of key values based on the first portion of the fetch address. A rotater rotates the first key value based on a second portion of the fetch address. An arithmetic unit selectively adds or subtracts the rotated first key value to or from the second key value based on a third portion of the fetch address to generate the decryption key.
Abstract:
A microprocessor includes functional units and control registers writeable to cause the functional units to institute actions that reduce the instructions-per-clock rate of the microprocessor to reduce power consumption when the microprocessor is operating in its lowest performance running state. Examples of the actions include in-order vs. out-of-order execution, serial vs. parallel cache access and single vs. multiple instruction issue, retire, translation and/or formatting per clock cycle. The actions may be instituted only if additional conditions exist, such as residing in the lowest performance running state for a minimum time, not running in a higher performance state for more than a maximum time, a user did not disable the feature, the microprocessor supports multiple running states and the operating system supports multiple running states.
Abstract:
A microprocessor includes a plurality of cores, a shared cache memory, and a control unit that individually puts each core to sleep by stopping its clock signal. Each core executes a sleep instruction and responsively makes a respective request of the control unit to put the core to sleep, which the control unit responsively does, and detects when all the cores have made the respective request and responsively wakes up only the last requesting cores. The last core writes back and invalidates the shared cache memory and indicates it has been invalidated and makes a request to the control unit to put the last core back to sleep. The control unit puts the last core back to sleep and continuously keeps the other cores asleep while the last core writes back and invalidates the shared cache memory, indicates the shared cache memory was invalidated, and is put back to sleep.
Abstract:
A secure memory, key expansion logic, and decryption logic are provided for a microprocessor that executes encrypted instructions. The secure memory stores a plurality of decryption key primitives. The key expansion logic selects two or more decryption key primitives from the secure memory and then derives a decryption key from them. The decryption logic uses the decryption key to decrypt an encrypted instruction fetched from the instruction cache. The decryption key primitives are selected on the basis of an encrypted instruction address, one of them is rotated by an amount also determined by the encrypted instruction address, and then they are additively or subtractively accumulated, also on the basis of the encrypted instruction address.
Abstract:
A multi-core microprocessor supports a plurality of operating states that provide different levels of performance and power consumption to the microprocessor and its cores. A control unit puts selected cores into selected operating states at selected times. A core-specific synchronization register is provided for each core external to the core and readable by the control unit. Each core responds to an instruction to target an operating state by writing a value identifying the target operating state to the synchronization register. The control unit causes power saving actions that affect shared resources provided that the actions do not reduce performance of any core sharing the resources below the core's target operating state.
Abstract:
A microprocessor natively translates and executes instructions of both the x86 instruction set architecture (ISA) and the Advanced RISC Machines (ARM) ISA. An instruction formatter extracts distinct ARM instruction bytes from a stream of instruction bytes received from an instruction cache and formats them. ARM and x86 instruction length decoders decode ARM and x86 instruction bytes, respectively, and determine instruction lengths of ARM and x86 instructions. An instruction translator translates the formatted x86 ISA and ARM ISA instructions into microinstructions of a unified microinstruction set architecture of the microprocessor. An execution pipeline executes the microinstructions to generate results defined by the x86 ISA and ARM ISA instructions.
Abstract:
A microprocessor includes a plurality of processing cores and an uncore random access memory (RAM) readable and writable by each of the plurality of processing cores. Each core of the plurality of processing cores comprises microcode run by the core that implements architectural instructions of an instruction set architecture of the microprocessor. The microcode is configured to both read and write the uncore RAM to accomplish inter-core communication between the plurality of processing cores.