Abstract:
A coating system comprises a basecoat of an thermosetting asphalt extended, chemically cross linked-urethane/epoxy hybrid basecoat resting on a substrate, preferably a porous substrate such as concrete or wood that off-gas when coated with a thermoplastic material; and a thermoplastic powder coating topcoat overlying at least the base coat. The thermosetting basecoat composition consisting essentially of, in weight percent based on final formulation, and between 10 and 90% of a petroleum asphalt; between 10 and 90%, of a hydroxy-terminated homopolymer; and between 0.1 and 30% of a functional epoxy reactive diluent for reducing the viscosity of the composition; and further up to 5% of a surfactant for improving surface imperfections, up to 5% of an anti-oxidant; and up to 25% of a thickening agent.
Abstract:
A method for color matching using a combination of two or more powder coatings having different colors from each other to give a target color, wherein lightness, blending weight ratio and volume-average particle size of the powder coatings to be combined satisfy the formula (I); and a method for preparing a coating film comprising applying powder coatings combined by the above method to a substrate. According to this method, since a coating film having homogeneous color with low mottling is obtained from two or more powder coatings having different colors from each other, the method can be used as a simplified process for color matching using the powder coatings requiring only a few primary color powder coatings to be furnished.
Abstract:
A powder of a barrier material (B) is, after having been melted, applied to a substrate of a polyolefin (A) according to flame spray coating process to give a shaped article, in which the barrier material (B) firmly adheres to the polyolefin (A) even when the surface of the substrate is not subjected to primer treatment. The shaped article is favorable to components to fuel containers, fuel tanks for automobiles, fuel pipes, etc.
Abstract:
The disclosure relates to a method of coating a high-strength aluminum object with polymer and surface-treating it, for improved corrosion resistance. A polymer composition is coated onto the surface of the aluminum object and is sintered or melted fast, at the same time as solution treatment for precipitation hardening takes place. The polymer composition substantially comprises a fluorine-containing polymer, preferably PTFE. According to one preferred embodiment of the invention, the polymer coating is sintered or melted fast on the aluminum surface during a time period of approx. 15 minutes at approx. 420 degrees C. After solution treatment and simultaneous surface treatment at elevated temperature, the aluminum object is rapidly cooled to room temperature and precipitation hardened thereafter by means of artificial aging preferably at approx. 120-150 degrees C. for approx. 24 hours.
Abstract:
An apparatus and method for nonextrusion manufacturing of catheters that can be used to produce catheters having a simple or complex configuration. A polymer material in a particulate preform is applied in a layer over an outer surface of a core member. By applying the polymer material in a particulate preform, a composition of the polymer material can be varied continuously as it is being applied to provide a variable hardness over the length of the catheter. A fibrous reinforcement can be used having a constant or variable pitch and a constant or variable number of fibers and fiber types. Sensors can be easily placed in a wall of the catheter as the catheter is being fabricated, thereby allowing more sensors to be used without placing conductors in the lumen of the catheter. Deflection passages can be provided in a wall of the catheter for inserting a wire to deflect the catheter. The polymer material can be heated into molten form as it is being applied, or the core mandrel or liner can be heated to cause the polymer material to consolidate upon impact. A mandrel in the preferred embodiment is rotated about its longitudinal axis while a spray head and filament winding head traverse the length of the mandrel and apply polymer material and filament, respectively. Other arrangements can also be used, including a spray head and filament winding head that rotate about a continuous core mandrel, and a fluidized bed or other container into which a heated core mandrel is immersed. A plurality of mandrels can be placed side-by-side to form a multiple lumen tubing.
Abstract:
A high temperature thermal sprayable material, such as a metal or metal oxide, is adhered to the surface of a thermal sprayable plastic particle to form a cladding layer thereon. The high temperature material cladding layer provides a thermal barrier that allows use of the plastic in a high temperature thermal spray process to create a duplex coating containing plastic.
Abstract:
A method for producing a dense and tenacious coating with a thermal spray gun including a nozzle member and a gas cap. The gas cap extends from the nozzle and has an inwardly facing cylindrical wall defining a combustion chamber with an open end and an opposite end bounded by the nozzle. An annular flow of a combustible mixture is injected at a pressure of at least two bar above atmospheric pressure from the nozzle coaxially into the combustion chamber. An annular outer flow of pressurized air is injected from the nozzle adjacent to the cylindrical wall. Powder particles having a heat-stable, non-fusible component and a heat-softenable component, and entrained in a carrier gas, are fed axially from the nozzle into the combustion chamber. An annular inner flow of pressurized air is injected from the nozzle into the combustion chamber coaxially between the combustible mixture and the powder-carrier gas. Upon combusting the annular mixture a supersonic spray stream containing the powder is propelled through the open end to produce a coating.
Abstract:
Diffusion coatings can be masked from portions of a workpiece by combination of layers the outer one of which forms coherent strong shell that holds inner layer or layers in place. All ingredients of these layers can be materials such as nickel, nickel aluminide, chronium, chromic oxide (Cr.sub.2 O.sub.3) and inert diluent, that do not contaminate superalloys or even low alloy or plain carbon steels. Layer can be deposited from suspension in a solution of film-former like and acrylic resin in readily volatilizable solvent such as methyl chloroform or chloroform. Innermost layer can be depletion-preventing and can be omitted. Such a holding shell can also be used to retain on a workpiece surface a layer that causes formation of a diffusion coating. Chromizing can be performed before aluminizing. Low alloy steel conduit can be internally chromized and/or externally chromized or aluminized to make it more desirable for use as high pressure steam boiler heat exchange tubing. Masking mixtures can be pastes extruded into place. Masking with resin-free masking powder while workpiece is subjected to gas-phase diffusion coating is particularly desirable.