Abstract:
A method of determining the time to release of a movable feature in a multilayer substrate of silicon-containing materials including alternate layers of polysilicon and silicon oxide wherein a mass monitoring device determines the mass of a released feature, and the substrate is etched with anhydrous hydrogen fluoride until the substrate mass is equivalent to that of the released movable feature when the etch time is noted. A suitable mass monitoring device is a quartz crystal microbalance.
Abstract:
A method for the selective removal of material from a substrate surface for forming a deepening comprises the steps of applying a mask onto the substrate surface in accordance with the desired selective removal and dry-etching the substrate, a metal, preferably aluminum, being used as the masking material. Power may be coupled inductively to a plasma.
Abstract:
A method of making a micromirror unit is provided. In accordance with the method, a micromirror unit is made from a material substrate having a multi-layer structure composed of silicon layers and at least one intermediate layer. The resulting micromirror unit includes a mirror forming base, a frame and a torsion bar. The method includes the following steps. First, a pre-torsion bar is formed by subjecting one of the silicon layers to etching. The obtained pre-torsion bar is rendered smaller in thickness than the mirror forming base and is held in contact with the intermediate layer. Then, the desired torsion bar is obtained by removing the intermediate layer contacting with the pre-torsion bar.
Abstract:
A method for fabricating a nozzle of microchip-based electrospray device is disclosed. The method includes using a primary mask to accurately define the nozzle feature including the annulus and the through hole of the electrospray device. A secondary masking step is conducted to pattern the through channel (typical the photoresist would serve as the secondary mask), followed by the defining and etching of the primary mask containing the full nozzle feature. The secondary mask serves to selectively mask given areas of the primary mask for subsequent etching. The through hole feature of the secondary mask aligns over the already patterned primary mask through channel, except that the secondary mask contains a slightly larger through channel diameter. This serves to mask off the annulus, but allowing the silicon through channel to be exposed for etching.
Abstract:
A method for fabricating a nozzle of microchip-based electrospray device is disclosed. The method includes using a primary mask to accurately define the nozzle feature including the annulus and the through hole of the electrospray device. A secondary masking step is conducted to pattern the through channel (typical the photoresist would serve as the secondary mask), followed by the defining and etching of the primary mask containing the full nozzle feature. The secondary mask serves to selectively mask given areas of the primary mask for subsequent etching. The through hole feature of the secondary mask aligns over the already patterned primary mask through channel, except that the secondary mask contains a slightly larger through channel diameter. This serves to mask off the annulus, but allowing the silicon through channel to be exposed for etching.
Abstract:
In a formation method for forming a fine structure in a workpiece containing an etching control component, using an isotropic etching process, a mask having an opening is applied to the workpiece, and the workpiece is etched with an etching solution to thereby form a recess, corresponding to a shape of the opening, in a surface of the workpiece. The etching of the workpiece is stopped due to the etching control component eluted out of the workpiece in the etching solution within the recess during the isotropic etching process.
Abstract:
The present invention provides a micromechanical or microoptomechanical structure produced by a process comprising defining the structure in a single-crystal silicon layer separated by an insulator layer from a substrate layer; selectively etching the single crystal silicon layer; depositing and etching a polysilicon layer on the insulator layer, with remaining polysilicon forming mechanical elements of the structure; metalizing a backside of the structure; and releasing the formed structure.
Abstract:
A MEMS probe and manufacturing method thereof are provided. The method is mainly to form connected first-level, second-level, and third-level pin grooves on both sides of the silicon substrate through an etching process, followed by two electroplating processes to deposit nickel-cobalt-phosphorus alloy in the first-level pin groove to form the tip of the microprobe, and to deposit nickel-cobalt alloy in the second-level pin groove and the third-level pin to form the pin head and pin arm, thereby forming a three-level microprobe. A circuit substrate made of ceramic material is disposed with at least one window, the surface of the circuit substrate adjacent to the window is provided with a plurality of circuit pads, and the circuit substrate is abutted to the pin arm of the microprobe. The silicon substrate is then removed, to form a plurality of cantilever microprobes made of nickel-cobalt-phosphorus alloy and nickel-cobalt alloy on the circuit substrate.
Abstract:
A method for performing atomic layer etching (ALE) on a substrate, including the following method operations: performing a surface modification operation on a surface of the substrate, the surface modification operation configured to convert at least one monolayer of the substrate surface to a modified layer; performing a removal operation on the substrate surface, to remove the modified layer from the substrate surface, wherein removing the modified layer includes exposing the substrate surface to a metal complex, such that a ligand exchange reaction occurs between the metal complex and converted species of the modified layer; performing, following the removal operation, a plasma treatment on the substrate surface, the plasma treatment configured to remove residues formed from the exposure of the substrate surface to the metal complex, wherein the residues are volatilized by the plasma treatment; repeating the foregoing operations until a predefined thickness has been etched from the substrate surface.
Abstract:
A semiconductor device production method includes performing trench etching to form a trench in a thickness direction of a semiconductor layer so that both of a first pattern portion and a second pattern portion whose side walls face each other across the trench are formed. In the trench etching, the semiconductor layer is etched and removed while a protective film is formed on a surface of the semiconductor layer, and the trench etching is performed so that the first pattern portion and the second pattern portion are configured to have a same potential or a same temperature during the trench etching.