Abstract:
A system for providing a seal between a rotating part and a stationary part that comprises two seals in series separated by a cavity is disclosed. The cavity may be at low pressure and failure of either seal may be detected by a change in cavity pressure. An alarm may be triggered when cavity pressure rises above a threshold, or when it remains above a threshold for more than a predetermined period of time. In a system comprising multiple cavities, a cavity may be selectively isolated to determine if a seal associated with that cavity is experiencing a leak.
Abstract:
A material processing system for processing a work piece is provided. The material processing is effected by supplying a reactive gas and energetic radiation for activation of the reactive gas to a surrounding of a location of the work piece to be processed. The radiation is preferably provided by an electron microscope. An objective lens of the electron microscope is preferably disposed between a detector of the electron microscope and the work piece. A gas supply arrangement of the material processing system comprises a valve disposed spaced apart from the processing location, a gas volume between the valve and a location of emergence of the reaction gas being small. The gas supply arrangement further comprises a temperature-adjusted, especially cooled reservoir for accommodating a starting material for the reactive gas.
Abstract:
An ion beam implanter includes an ion beam source for generating an ion beam moving along a beam line and an implantation chamber wherein a workpiece is positioned to intersect the ion beam for ion implantation of an implantation surface of the workpiece by the ion beam. The implanter further includes a workpiece support structure coupled to the implantation chamber and supporting the workpiece within an interior region of the implantation chamber, the workpiece support structure. The workpiece support structure includes a rotation member coupled to the implantation chamber for changing an implantation angle of the workpiece with respect to a portion of the ion beam within the implantation chamber. The workpiece support structure also includes a translation member movably coupled to the rotation member and supporting the workpiece for movement along a path of travel wherein at least some components of the translation member components are disposed within a reduced pressure translation member chamber. The translation member chamber is isolated from the implantation chamber interior region by a dynamic seal. A workpiece holder support arm of the translation member extends through the dynamic seal and into the implantation chamber.
Abstract:
A stage for processing a substrate, especially useful for vacuum applications, has a recess just large enough to hold a substantially flat substrate and a chuck or holder but not much more. The perimeter of the recessed side has an air bearing surface separated from the recess by differentially pumped groves and seal lands. The air bearing lands are urged against a reference plate guide surface and the seal lands being substantially coplanar create a resistance to flow between the groves and recess, on the other side of the base reference plate mounts the radiation source. The VCS may operate in a vacuum environment itself, or in another preferred embodiment, it provides the possibility for multiple stages moving between process or inspection steps within the same tool or process sequence.
Abstract:
An electrically insulating vacuum coupling for use in an ion implanter for connecting any two parts of the vacuum chamber housing together while maintaining the electrical potentials of the two parts. The coupling comprises an inner sleeve of ceramic material (e.g. Al2O3) and an outer sleeve of a polymer/litharge mixture. The polymer may be a urethane polymer. Litharge is included in the material of the outer sleeve to absorb x-rays produced within the vacuum chamber. The coupling is particularly useful for coupling an ion source to the main housing of the vacuum chamber
Abstract translation:一种用于离子注入机的电绝缘真空联接器,用于将真空室壳体的任何两个部分连接在一起,同时保持两部分的电位。 联接器包括陶瓷材料(例如Al 2 O 3)的内套筒和聚合物/锂聚合物的外套筒。 聚合物可以是聚氨酯聚合物。 Litharge包含在外套筒的材料中以吸收在真空室内产生的x射线。 耦合对于将离子源耦合到真空室的主壳体特别有用
Abstract:
In accordance with the present invention, an insulating sealing structure useful in physical vapor deposition apparatus is provided. The insulating sealing structure is capable of functioning under high vacuum and high temperature conditions. The apparatus is a three dimensional structure having a specifically defined range of electrical, chemical, mechanical and thermal properties enabling the structure to function adequately as an insulator which does not break down at voltages ranging between about 1,500 V and about 3,000 V, which provides a seal against a vacuum of at least about 10null6 Torr, and which can function at a continuous operating temperature of about 300null F. (148.9null C.) or greater. The insulating sealing structure may be fabricated solely from particular polymeric materials or may comprise a center reinforcing member having at least one layer applied to its exterior surface, where the at least one surface layer provides at least a portion of the insulating properties and provides the surface finish necessary to make an adequate seal with a mating surface. A first preferred embodiment comprises an aluminum center reinforcing member having at least one layer of a polymeric insulator applied to provide an insulating, sealing surface. A second preferred embodiment comprises an anodized aluminum center reinforcing member having an inorganic insulator such as silicon oxide, silicon nitride, or aluminum nitride applied to provide the insulating, sealing surface. A third preferred embodiment comprises a graphite, silica or glass fiber-reinforced member having at least one layer of a polymeric insulator applied thereover, to provide an insulating sealing surface. A fourth preferred embodiment comprises a silicon nitride or graphic fiber-reinforced member having an inorganic, non-metallic insulating sealing surface thereover.
Abstract:
A sealing mechanism comprises a support member forming part of the semiconductor producing apparatus which has a vacuum chamber, a rotation shaft rotatably received in the support member, and at least three seal rings axially spaced apart from each other between the support member and the rotation shaft to form a first fluid chamber close to the atmosphere and a second fluid chamber close to the vacuum chamber. The first fluid chamber is vacuumized to have a first pressure, and the second fluid chamber is also vacuumized to have a second pressure which is lower than the first pressure. The first and second fluid chambers work together to enhance the sealing performance of the sealing mechanism.
Abstract:
A fluid bearing vacuum seal assembly comprises an annular stator with first and second opposed surfaces, at least part of the first surface defining a first bearing surface. The stator also defines an aperture having a wall extending between the first and second surfaces. The assembly also comprises a rotor with first and second opposed surfaces, the second surface defining in part a second bearing surface which is supported relative to the first bearing surface in use so that the rotor is rotatable relative to the stator. A cylindrical wall projects axially from the second surface of the rotor through the aperture in the stator. An annular flange projects radially outwardly from the cylindrical wall adjacent to the second surface of the stator. At least one annular differential pumping channel is defined in each of the first and second surfaces of the stator and the wall which connects the first and second surfaces. This configuration allows the differential pumping channels to be spaced apart to a greater extent, improving the performance of the vacuum seal and allowing a better vacuum to be achieved.
Abstract:
A sealing structure for an airtight chamber includes a first division member and a second division member being repeatedly joined and disjoined. The first and second chamber members are joined together to define the chamber between them and disjoined to allow access to the chamber. The structure also includes a sealing member pressed between the first and second division members to keep the chamber airtight against a pressure difference between the exterior and the interior of the chamber while the first and second division members are joined. The first and second division members are made of a material with hardness lower than that of the sealing member and are formed with a groove. The structure also includes seat members being embedded in the grooves and pressed against the sealing member while the first and second division members are joined. The seat member is made of a material harder than the division member and welded in said groove only along its contacting surfaces with the groove.
Abstract:
An apparatus includes an ion chamber and a valve assembly. The ion chamber may include a housing enclosing a gas and one or more electrodes. The valve assembly is coupled to the ion chamber allowing control of replacement of the gas within the housing.