Abstract:
Provided are new techniques for fault analysis in IC semiconductor devices, including system designs and methods to enable the probing of circuitry within an IC device under test (DUT) using electron beam (e-beam) techniques while the DUT is being stimulated electrically, or while the device is active on its own or within a host system mounted in a circuit board or other module. The DUT could be a packaged IC, or an IC in some unpackaged form. To create a local evacuated volume immediately outside the e-beam tool, a sealing element is sealed against or around the DUT for a localized seal. Such an arrangement obviates the need for vacuum feedthroughs of possibly thousands of signals required to operate and monitor the DUT, and further enables probing of a DUT while it is operating in its normal environment, such as installed on a circuit board in its system, or on a tester.
Abstract:
A material processing system for processing a work piece is provided. The material processing is effected by supplying a reactive gas and energetic radiation for activation of the reactive gas to a surrounding of a location of the work piece to be processed. The radiation is preferably provided by an electron microscope. An objective lens of the electron microscope is preferably disposed between a detector of the electron microscope and the work piece. A gas supply arrangement of the material processing system comprises a valve disposed spaced apart from the processing location, a gas volume between the valve and a location of emergence of the reaction gas being small. The gas supply arrangement further comprises a temperature-adjusted, especially cooled reservoir for accommodating a starting material for the reactive gas.
Abstract:
A charged particle optical system for testing, imaging or inspecting substrates comprises: a charged particle optical assembly configured to produce a line of charged particle beams equally spaced along a main scan axis, each beam being deflectable through a large angle along the main scan axis; and linear detector optics aligned along the main scan axis. The detector optics includes a linear secondary electron detector, a field free tube, voltage contrast plates and a linear backscattered electron detector. The large beam deflection is achieved using an electrostatic deflector for which the exit aperture is larger than the entrance aperture. One embodiment of the deflector includes: two parallel plates with chamfered inner surfaces disposed perpendicularly to the main scan axis; and a multiplicity of electrodes positioned peripherally in the gap between the plates, the electrodes being configured to maintain a uniform electric field transverse to the main scan axis.
Abstract:
A material processing system for processing a work piece is provided. The material processing is effected by supplying a reactive gas and energetic radiation for activation of the reactive gas to a surrounding of a location of the work piece to be processed. The radiation is preferably provided by an electron microscope. An objective lens of the electron microscope is preferably disposed between a detector of the electron microscope and the work piece. A gas supply arrangement of the material processing system comprises a valve disposed spaced apart from the processing location, a gas volume between the valve and a location of emergence of the reaction gas being small. The gas supply arrangement further comprises a temperature-adjusted, especially cooled reservoir for accommodating a starting material for the reactive gas.
Abstract:
In a partial-vacuum-type, electron-beam irradiation system having a construction such that a static-pressure floating pad is connected to a vacuum chamber incorporating an electron-beam column, and an electron-beam passes through an electron-beam passage of the static-pressure floating pad to impinge on a body to be irradiated in the condition where the static-pressure floating pad is contactlessly attracted to the body to be irradiated, a vacuum-seal valve for opening and closing the electron-beam passage is provided inside the static-pressure floating pad, and when the static-pressure floating pad is separated away from the body to be irradiated, the vacuum-seal valve is actuated to close the electron-beam passage, whereby the atmospheric air is prevented from flowing into the vacuum chamber.
Abstract:
A printing head suitable for imaging a ferroelectric printing form is sealed relative to the printing form by a spring-elastic seal. In the discharge chamber of the printing head, at a low pressure, preferably less than 10 hPa, and especially in the presence of a gas with high ionization probability, a discharge plasma is created, from which charge carriers emerge onto the printing form as the result of activation between electrodes, with simultaneous focussing by the application of electric and/or magnetic fields between plates.
Abstract:
The present invention includes a plasma reactor chamber, which is generally constructed such that a large opening exists in a wall of the chamber. The reactor chamber is deployed remotely from a control console, such as on a robotic arm. A plasma generating means, such as RF electrodes is disposed within the chamber and a flexible vacuum seal is engaged to the outer edge of the chamber wall, surrounding the opening. Operating components, such as a vacuum pump, plasma gas supply and RF generator are disposed within the control console, and various supply lines join the operating components to the reactor chamber. In operation, the reactor chambler is placed against a portion of a surface that is to be treated, and a low pressure plasma is created within the chamber to treat the zone of the surface enclosed within the seal of the chamber. Particularly shaped seals for irregularly shaped surfaces and a rolling seal for movement of the reactor chamber relative to a surface are within the contemplation of the invention.
Abstract:
A plasma treatment chamber comprises a chamber body having an opening in a top surface thereof. A rotatable pedestal is within the chamber body having a support surface to hold and rotate a workpiece in a processing region. A cross-flow pumping ring is over the opening in the chamber body to inject a gas flow in a direction generally parallel to and across a surface of the workpiece. A lid is over the cross-flow pumping ring, the lid having a plurality of microwave resonators to ignite the gas flow and form plasma.
Abstract:
A user interface for operation of a scanning electron microscope device that combines lower magnification reference images and higher magnification images on the same screen to make it easier for a user who is not used to the high magnification of electron microscopes to readily determine where on the sample an image is being obtained and to understand the relationship between that image and the rest of the sample. Additionally, other screens, such as, for example, an archive screen and a settings screen allow the user to compare saved images and adjust the settings of the system, respectively.
Abstract:
Provided is a deposition device which can secure work space without vertical overlap of the deposition unit and the units upstream and downstream thereof. This deposition device is provided with a deposition unit (16), and upstream and downstream units (14, 18) arranged to the left and right thereof. The deposition unit (16) is provided with: a deposition roller (70); multiple guide rollers (72); a main chamber (64) having a deposition roller housing unit (74) and, thereabove, a guide roller housing unit (76); first and second process chambers (66, 68) which house multiple deposition process devices (84, 86) to the left and right of the deposition roller housing unit (74); and process chamber support units (104) for supporting the first and second process chambers (66, 68) so as to allow the first and second process chambers (66, 68) to move between a regular position for deposition and a retracted position retracted to the left or right, and between the retracted position and an exposure position separated in the front/back direction.