Abstract:
A method for operating a liquid ring vacuum pump employs taking vibration measurements of the pump and comparing the measurements with a prescribed cavitation threshold. In addition, a measurement representing the liquid content in the gas to be conveyed is taken. This measurement is compared with a prescribed threshold. The rotational speed of the liquid ring vacuum pump is reduced if the prescribed cavitation threshold has been exceeded and the liquid content is less than the prescribed threshold. The rotational speed is increased if the prescribed cavitation threshold has been exceeded and the liquid content is greater than the prescribed threshold. A liquid ring vacuum pump is designed for implementing the method. Due to the regulation depending on the oscillations of the pump, the pump can be operated near the cavitation boundary without any risk of damage.
Abstract:
An induced hollow screw driving apparatus comprises a shell (6) shaped like a round pipe and having a central through hole in an axial direction; a motor rotor (1) is disposed in the through hole of the shell (6) through two bearings (4) and has a central through hole in an axial direction; screw rings (2.1 and 2.2) used for driving are disposed on an inner wall of the through hole of the motor rotor (1); a drive block (5) is inserted in the sealed shell (6) to induce an outer wall (3) of the rotor (1), so as to drive the rotor (1) to rotate. The screw ring driving manner of the driving apparatus has small friction and noise, and the overall driving efficiency thereof exceeds that of existing driving devices such as a propeller; the driving apparatus further has advantages such as being leakage-free, coupling-free, spark-free, cavitation-free, capable of self-speed regulation, capable of turning, magnetizable and extendable, capable of self-cleaning, maintenance-free, and having a long service life.
Abstract:
A variable capacity screw compressor comprises a suction port, at least two screw rotors and a discharge port being configured in relation to a selected rotational speed that operates at least one screw rotor at an optimum peripheral velocity that is independent of a peripheral velocity of the at least one screw rotor at a synchronous motor rotational speed for a rated screw compressor capacity. A motor is configured to drive the at least one screw rotor at a rotational speed at a full-load capacity that is substantially greater than the synchronous motor rotational speed at the rated screw compressor capacity. A variable speed drive receives a command signal from a controller and generates a control signal that drives the motor at the selected rotational speed.
Abstract:
A method for calculating the probability of moisture build-up in a compressor includes the steps of sensing a temperature of the ambient air, sensing a discharge pressure of the compressor, sensing a temperature of the compressor, processing the ambient air temperature and operating pressure sensed to obtain a required temperature at which condensation will form, and comparing the temperature of the compressor to the required temperature.
Abstract:
The compressor unit having at least two compressors, for example a low pressure stage compressor 11 and a high pressure stage compressor 12 connected in series, of which the low pressure sage compressor 11 and high pressure stage compressor 12 are driven by driving devices 13 and 14 respectively separately or driven by a single driving device 41 via variable speed gears 43 and 44 respectively connected to each of the compressors, and rotation speed of the low pressure stage compressor 11 and that of the high pressure stage compressor 12 are controlled independently in accordance with various operating conditions of the compressor unit so that optimal load balancing of the compressors 11 and 12 is always achieved.
Abstract:
A screw compressor includes a compressor main body, a male rotor having a screw-like male tooth shape and a female rotor having a screw-like female tooth shape meshing with the screw-like male tooth shape or the male rotor. The male and female motors are provided within the compressor main body. A motor casing is operably connected to the compressor main body, and a high speed electric motor provided within the motor casing. The motor includes a motor rotor, a motor stator and a motor shaft for driving at least one of the male and female rotors. A speed ratio of the motor shaft and the at least one of the male and female rotors driven by the motor shaft is in a range of 2:1 to 1:2.
Abstract:
An apparatus for driving a compressor comprises a compressor having a compression mechanism part for sucking a fluid to compress the same, and an electric motor for driving the compression mechanism part, and an inverter device for driving the electric motor at variable speeds. The electric motor comprises a self-starting type electric motor having a rotor, which comprises a cage conductor and a polarized permanent magnet, and the inverter device comprises a plurality of semiconductor switches for controlling drive frequencies of the electric motor.
Abstract:
The present invention provides a variable frequency controlled refrigerant compressor in a dehydrator for compressed air or other cases. In particular, the present invention detects changes in a demand on the pneumatic air supply by monitoring a pressure of a refrigerant system associated with the air supply. Based on the changes in the refrigerant system pressure, a motor speed controller generates and sends a control signal to the variable speed compressor to adjust the speed of the variable speed compressor based on the demand in the air supply.
Abstract:
In a hybrid compressor for a vehicle where a vehicle engine is stopped when the vehicle is temporally stopped, a pulley, a motor and a compressor can be driven in independent from each other, and are connected to a sun gear, planetary carriers and a ring gear of a planetary gear. A rotational speed of the motor is adjusted by a controller, so that a rotational speed of the compressor is changed with respect to a rotational speed of the pulley. Accordingly, production cost of the hybrid compressor and the size thereof can be reduced, while a cooling function can be ensured even when the vehicle engine is stopped.
Abstract:
An apparatus 115 for processing a substrate 20, comprises an integrated pumping system 155 having a high operating efficiency, small size, and low vibrational and noise levels. The apparatus 115 comprises a chamber, such as a load-lock chamber 110, transfer chamber 115, or process chamber 120. An integrated pump 165 is abutting or adjacent to one of the chambers 110, 115, 120 for evacuating gas from the chambers. In operation, the pump is located within the actual envelope or footprint of the apparatus and has an inlet 170 connected to a chamber 110, 115, 120, and an outlet 175 that exhausts the gas to atmospheric pressure. Preferably, the integrated pump 165 comprises a pre-vacuum pump or a low vacuum pump and is housed in a noise reducing enclosure having means for moving the pump between locations and means for stacking pumps vertically in use.