Abstract:
Swellable particles for delivery of a drug or other working agent to the pulmonary system are provided. The swellable particles include a dehydrated (dry) aerodynamic particle diameter of 5 μm or less to enable delivery to the respiratory tract, such as for example to the tracheo-bronchial airways of the upper respiratory tract and/or to the alveolic regions of the deep lung, and a hydrated particle diameter that is greater than 6 μm volume mean diameter to retard or prevent their phagocytosis by the macrophages present in airways of the respiratory tract.
Abstract:
Various embodiments provide non-planar nanowires, nanowire arrays, and nanowire networks as well as methods of their formation and applications. The non-planar nanowires and their arrays can be formed in a controlled manner on surfaces having a non-planar orientation. In embodiments, two or more adjacent nanowires from different surfaces can grow to merge together forming one or more nanowire branches and thus forming a nanowire network. In embodiments, the non-planar nanowires and nanowire networks can be used for cantilever oscillation, switching and transistor actions.
Abstract:
A system and methods that generates a physical unclonable function (“PUF”) security key for an integrated circuit (“IC”) through use of equivalent resistance variations in the power distribution system (“PDS”) to mitigate the vulnerability of security keys to threats including cloning, misappropriation and unauthorized use.
Abstract:
The present invention, provides a flow cytometry apparatus for the detection of particles from a plurality of samples comprising: means for moving a plurality of samples comprising particles from a plurality of respective source wells into a fluid flow stream; means for introducing a separation gas between each of the plurality of samples in the fluid flow stream; and means for selectively analyzing each of the plurality of samples for the particles. The present invention also provides a flow cytometry method employing such an apparatus.
Abstract:
Nanowire and larger, post-based HEMTs, arrays of such HEMTs, and methods for their manufacture are provided. In one embodiment, a HEMT can include a III-N based core-shell structure including a core member (e.g., GaN), a shell member (e.g., AlGaN) surrounding a length of the core member and a two-dimensional electron gas (2-DEG) at the interface therebetween. The core member including a nanowire and/or a post can be disposed over a doped buffer layer and a gate material can be disposed around a portion of the shell member. Exemplary methods for making the nanowire HEMTs and arrays of nanowire HEMTs can include epitaxially forming nanowire(s) and epitaxially forming a shell member from each formed nanowire. Exemplary methods for making the post HEMTs and arrays of post HEMTs can include etching a III-N layer to form III-N post(s) followed by formation of the shell member(s).
Abstract:
Photon-based radiosurgery is widely used for treating local and regional tumors. The key to improving the quality of radiosurgery is to increase the dose falloff rate from high dose regions inside the tumor to low dose regions of nearby healthy tissues and structures. Dynamic photon painting (DPP) further increases dose falloff rate by treating a target by moving a beam source along a dynamic trajectory, where the speed, direction and even dose rate of the beam source change constantly during irradiation. DPP creates dose gradient that rivals proton Bragg Peak and outperforms Gamma Knife® radiosurgery.
Abstract:
Ultra-thin hybrid and/or microporous materials and methods for their fabrication are provided. In one embodiment, the exemplary hybrid membranes can be formed including successive surface activation and reaction steps on a porous support that is patterned or non-patterned. The surface activation can be performed using remote plasma exposure to locally activate the exterior surfaces of porous support. Organic/inorganic hybrid precursors such as organometallic silane precursors can be condensed on the locally activated exterior surfaces, whereby ALD reactions can then take place between the condensed hybrid precursors and a reactant. Various embodiments can also include an intermittent replacement of ALD precursors during the membrane formation so as to enhance the hybrid molecular network of the membranes.
Abstract:
The present invention includes methods for the reduction of speckle noise in an image and methods for segmenting an image. Each of the methods disclosed herein includes steps for analyzing the uniformity of a pixel within a plurality of pixels forming a portion of the image and, based on the uniformity of the intensity of the plurality of pixels, adjusting and/or replacing the pixel in order to produce a speckle-noise reduced image, a segmented image, or a segmented and speckle-noise reduced image. The methods of the present invention can employ for example conditional probability density functions, nonlinear estimator functions, convex energy functions and simulated annealing algorithms in the performance of their respective steps.
Abstract:
The present invention is directed to novel non-invasive diagnostic and therapeutic tools/compounds comprising a hybride cyclic peptide which utilizes a cyclic peptide chelating group wherein the compound binds to a MSH receptor to image and treat cancers, especially, melanoma, including metastatic melanoma in vivo. The present invention represents a clear advance in the art which presently relies on tissue biopsy for diagnoses of these cancers. The novel imaging probes are capable of detecting cancerous melanoma cells, as well as their metastatic spread in tissues. This represents a quantum step forward in the diagnosis and treatment of melanoma, including metastatic melanoma using non-invasive molecular imaging techniques. The novel probes of the present invention will also be useful to initiate therapy for melanoma as well as monitor patients response to chemotherapy treatments and other interventions or therapies used in the treatment of melanoma/metastatic melanoma. Compound according to the present invention may be used as diagnostic tools for a number of conditions and diseases states as well as therapeutic agents for treating such conditions and disease states.
Abstract:
We describe methods for synthesis and formulations of stable elastomeric negative acoustic contrast particles with controllable compressibility and density. These elastomeric negative acoustic contrast particles have a density/compressibility ratio that is less than that of water and therefore exhibit negative acoustic contrast under acoustic radiation exposure. This negative acoustic contrast allows our elastomeric negative acoustic contrast particles to be acoustically manipulated (e.g. separated) differently from other components (e.g. cells) within an aqueous solution. This disclosure also describes methods for biofunctionalization of the elastomeric negative acoustic contrast particles and as an example their use as platforms for bioassays. Potential applications of these elastomeric negative acoustic contrast particles include sensitive bioassays based on acoustic flow cytometry and other types of techniques that utilize acoustic fields, including ultrasound imaging and ultrasound triggered drug delivery.