Abstract:
A multi-phase partial response equalizer circuit includes sampler circuits that sample an input signal to generate sampled signals in response to sampling clock signals having different phases. A first multiplexer circuit selects one of the sampled signals as a first sampled bit to represent the input signal. A first storage circuit coupled to an output of the first multiplexer circuit stores the first sampled bit in response to a first clock signal. A second multiplexer circuit selects one of the sampled signals as a second sampled bit to represent the input signal based on the first sampled bit. A second storage circuit stores a sampled bit selected from the sampled signals in response to a second clock signal. A time period between the second storage circuit storing a sampled bit and the first storage circuit storing the first sampled bit is substantially greater than a unit interval in the input signal.
Abstract:
Non-transitory computer-readable media having information embodied therein that includes a description of an integrated circuit device. The information includes descriptions of a volatile storage die having a first addressable range of storage cells and a non-volatile storage die. The description of the non-volatile storage die having a second addressable range of storage cells that defines an overlapping region with the first addressable range of storage cells. The information also includes a description of an interface circuit coupled to the volatile and non-volatile storage die to selectively transfer data stored in the overlapping region of storage cells between the die.
Abstract:
A controllable delay element includes a delay element to provide a variable delay from an input signal to an output signal. The variable delay can be controlled by a digital delay input. The delay element has a delay range that is controlled in response to a delay range input. The delay range of the delay element can be calibrated to a desired range of delays in response to a relative delay between a first timing reference and a second timing reference. A common timing reference is applied to a plurality of receivers and a strobe receiver. The delay through the strobe receiver is adjusted to measure the delay mismatches between the plurality of receivers. The mismatches are used to select a value for the delay through the strobe receiver.
Abstract:
An integrated-circuit memory controller outputs to a memory device a first signal in a first state to enable operation of synchronous data transmission and reception circuits within the memory device. A transaction queue within the memory controller stores memory read and write requests that, to be serviced, require operation of the synchronous data transmission and reception circuits, respectively, within the memory device. Power control circuitry within the memory controller determines that the transaction queue has reached a predetermined state and, in response, outputs the first signal to the memory device in a second state to disable operation of the synchronous data transmission and reception circuits within the memory device.
Abstract:
A dynamic random access memory (DRAM) array is configured for selective repair and error correction of a subset of the array. Error-correcting code (ECC) is provided to a selected subset of the array to protect a row or partial row of memory cells where one or more weak memory cells are detected. By adding a sense amplifier stripe to the edge of the memory array, the adjacent edge segment of the array is employed to store ECC information associated with the protected subsets of the array. Bit replacement is also applied to defective memory cells. By implementing ECC selectively rather than to the entire array, integrity of the memory array is maintained at minimal cost to the array in terms of area and energy consumption.
Abstract:
A semiconductor memory system includes a first semiconductor memory die and a second semiconductor memory die. The first semiconductor memory die includes a primary data interface to receive an input data stream during write operations and to deserialize the input data stream into a first plurality of data streams, and also includes a secondary data interface, coupled to the primary data interface, to transmit the first plurality of data streams. The second semiconductor memory die includes a secondary data interface, coupled to the secondary data interface of the first semiconductor memory die, to receive the first plurality of data streams.
Abstract:
The present embodiments provide a system that supports self-refreshing operations in a memory device. During operation, the system transitions the memory device from an auto-refresh state, wherein a memory controller controls refreshing operations for the memory device, to a self-refresh state, wherein the memory device controls the refreshing operations. While the memory device is in the self-refresh state, the system sends progress information for the refreshing operations from the memory device to the memory controller. Next, upon returning from the self-refresh state to the auto-refresh state, the system uses the progress information received from the memory device to control the sequencing of subsequent operations by the memory controller.
Abstract:
A memory system includes a memory module that supports error detection and correction (EDC) in a manner that relieves a memory controller or processor of some or all of the computational burden associated with EDC. individual EDC components perform EDC functions on subsets of the data, and share data between themselves using relatively short, fast interconnections.
Abstract:
A method and system that provides for execution of a first calibration sequence, such as upon initialization of a system, to establish an operation value, which utilizes an algorithm intended to be exhaustive, and executing a second calibration sequence from time to time, to measure drift in the parameter, and to update the operation value in response to the measured drift. The second calibration sequence utilizes less resources of the communication channel than does the first calibration sequence. In one embodiment, the first calibration sequence for measurement and convergence on the operation value utilizes long calibration patterns, such as codes that are greater than 30 bytes, or pseudorandom bit sequences having lengths of 2N−1 bits, where N is equal to or greater than 7, while the second calibration sequence utilizes short calibration patterns, such as fixed codes less than 16 bytes, and for example as short as 2 bytes long.
Abstract:
An array of diffraction-pattern generators employ phase anti-symmetric gratings to projects near-field spatial modulations onto a closely spaced array of photoelements. Each generator in the array of generators produces point-spread functions with spatial frequencies and orientations of interest. The generators are arranged in an irregular mosaic with little or no short-range repetition. Diverse generators are shaped and placed with some irregularity to reduce or eliminate spatially periodic replication of ambiguities to facilitate imaging of nearby scenes.