Abstract:
A lightweight intermodal or road trailer based system for transporting refrigerated gaseous fluids is provided. The system includes an enclosed and insulated transportation housing, and a plurality of low-temperature resistant type 4 pressure vessels. The pressure vessels are at least three feet in diameter secured within the transportation housing for containing the gaseous fluids.
Abstract:
Provided is a blanket installation method, which includes a transporting step of transporting a blanket unit (1), in which the blanket (2) and a transport jig (3) are coupled in one body, between an inner tank (60) and an outer tank in a double shell tank, in a suspended condition, and a mounting step of mounting the blanket unit on a shell plate of the inner tank. According to the method, in the event of installing work of the blanket, the improvement in work efficiency and safety can be achieved.
Abstract:
A gas pressure regulator is provided that includes a body defining a front portion and opposed side portions. A first gas pressure indicator is mounted to a lower end of the front portion of the body, and a second gas pressure indicator mounted to an upper end of the front portion of the body, wherein the first gas pressure indicator and the second gas pressure indicator are stacked in a vertical configuration. Additionally, a pressure adjustment knob is mounted to one of the side portions of the body in one form of the present disclosure.
Abstract:
A cylinder caddy, adapted to a bottle with a neck, a bottom, and a center of gravity is provided. The caddy includes a handle with a first end pivotally attached to the upper strap, and a second end configured to detachably connect to the neck. In a first position, the handle is pivoted to allow the second end to be attached to the neck, thereby requiring the removal of a regulator, allowing the storage compartment to hold a regulator, protecting the neck from dust and other particulates and allowing a user to safely carry the cylinder. In a second position, the handle is pivoted to allow the second end form a strut, thereby providing the user a more stable operating position.
Abstract:
Provided is an independent tank, and a manufacturing method therefor, for which local bending stress occurring on the vicinity of a boundary portion (welded portion) can be reduced without increasing plate thickness. An independent tank has at least one curvature change portion in which the curvature along the axial direction of plate members that form the tank changes along the axial direction. Both the inner peripheral surface and the outer peripheral surface of the plate member on the small curvature side are not flush with respect to the inner peripheral surface and the outer peripheral surface of the plate member on the large curvature side. The plate thickness center of the plate member on the small curvature side is offset toward the radial direction inner side or the radial direction outer side with respect to the plate thickness center of the plate on the large curvature side.
Abstract:
Device for supplying fluid comprising a source tank for storing gaseous fuel at a cryogenic temperature in the form of a liquid-gas mixture, a cryogenic pump, the pump comprising a suction inlet connected to the lower part of the tank via a suction line, a high-pressure first outlet intended to supply high-pressure fluid to a user and a degassing second outlet connected to the upper part of the tank via a return pipe, the device being characterized in that it comprises a cryogenic buffer storage volume, a first pipe connecting the lower part of the buffer storage volume to the tank and a second pipe connecting the upper part of the tank to the buffer storage volume, and in that the device comprises a liquefaction member for liquefying the gas in the buffer storage volume.
Abstract:
The invention relates to a coupling system for a gas container, in particular a gas cylinder (9), comprising a base (1) which is designed to be fixed on a support (10), wherein the base (1) comprises a first arm (3a) and a second arm (3b), at least one of which is mobile in pivoting relative to the other, and an activation unit (4) which co-operates with at least one of said first and second arms (3a, 3b), such as to pivot at least one of said first and second arms (3a, 3b) to bring them towards one another, when said activation unit (4) is activated. The invention also relates to a support/cylinder assembly comprising a coupling system of this type, and a gas cylinder (9) retained by the arms (3a, 3b) of said coupling system.
Abstract:
A pressure vessel refuelling system enables fast refuelling of Compressed Natural Gas (CNG) fuel tanks. The system includes a pressure vessel having a gas inlet/outlet port and a liquid inlet/outlet port; a first liquid at least partially filling the pressure vessel; a liquid layer of a second liquid floating on top of the first liquid, wherein the second liquid is immiscible with the first liquid; a gas at least partially filling the pressure vessel above the liquid layer of the second liquid, the gas in fluid communication with the gas inlet/outlet; and a pump in fluid communication with the liquid inlet/outlet of the pressure vessel, whereby the first liquid can be pumped or returned to/from storage into or out of the pressure vessel.
Abstract:
A liquefied gas tank includes an inner tank (2) that stores liquefied gas and is disposed so as to be capable of self-standing on a floor surface (F), and an outer tank (3) that is covered over the inner tank (2) and is supported by an upper face portion (2a) of the inner tank (2). The outer tank (3) is configured to be capable of sliding on the upper face portion (2a) of the inner tank (2) in response to expansion and contraction in the horizontal direction of the inner tank (2), and to be capable of moving in response to expansion and contraction in the vertical direction of the inner tank (2). A ceiling portion (3a) of the outer tank (3) that is placed on the upper face portion (2a) of the inner tank (2) is not fixed to the upper face portion (2a) of the inner tank (2), and the inner tank (2) and the outer tank (3) are configured to be capable of sliding in the horizontal direction relative to each other. The outer tank (3) includes an expansion and contraction mechanism portion (33) that is disposed along the lower outer circumference thereof.
Abstract:
A system includes a plurality of sub-terrain holes, a plurality of cylindrical storage sleeves disposed within the plurality of sub-terrain holes and each having a top end a bottom end, and a pressure release disposed in each of the top end and the bottom end of the plurality of cylindrical storage sleeves to seal the top end and the bottom end.