Abstract:
A pressure sensor for use with a fluid delivery system having good sensitivity at low pressure, but also configured to remain in operating condition after being exposed to high pressures is disclosed herein. In one variation, the pressure sensor includes a fluid path set, a deformable element associated with the fluid path set and configured to deform in response to an external pressure, and a pressure transducer for monitoring deformation of the deformable element. In certain embodiments, the pressure sensor is configured to measure fluid pressure within the range of between about 0 mm Hg to about 300 mm Hg. However, the sensor pressure is also be configured to remain functional after being exposed to pressure in excess of about 60,000 mm Hg.
Abstract:
A syringe includes a body and a plunger disposed therein. The body includes a nozzle formed therein and at least one hub member connected thereto or integrally formed thereon for holding an end of a connector tube. The connector tube includes two ends, each end preferably being connected to a respective hub member to retain the connector tube in contact with the syringe. Preferably, the syringe and the connector tube are packaged in a pre-connected condition for ease of use by the customer. Furthermore, flexible inlet tubing for connection to a syringe for filling the syringe with contrast media, for example, is described. The inlet tubing permits filling of the syringe from either a bag or a bottle and may remain attached to the syringe so that it forms at least a part of the connection to the patient. In addition, an apparatus for facilitating the purge of air from a connector tube that will ultimately be connected between a syringe and a patient is described. The apparatus includes a purging tube connected to the distal end of the connector tubing from the syringe. The purging tube includes a venting cap at its distal end. A flow inhibitor is positioned under the venting cap to cooperate with the venting cap by discouraging the discharge of fluid from the distal end of the purging tube while permitting the discharge of air therefrom.
Abstract:
An angiographic injector control system for delivering a controlled volume of injection fluid is described. The injector has a motor driven piston for ejecting fluid from a syringe cartridge contained within a pressure jacket. The drive motor is operated in accordance with a command voltage corresponding to an incremental position of the injector piston, the command position signal also corresponding to the volume of fluid to be ejected from the cartridge. This command position voltage signal is compared to an actual position voltage to produce an error signal for operating the drive motor, whereby the syringe piston follows the position command signal. Volume selector means produce a volume signal corresponding to a desired maximum volume of fluid to be ejected; this volume signal is compared to the sum of the position command increments, producing a stop signal when the position command signal equals or exceeds the volume limit signal. Thus, the injector control system regulates the injection of fluid by sensing and controlling the position of the injector piston.
Abstract:
A high pressure medical connector tubing assembly includes a high pressure medical connector tubing assembly, including a tube element having opposed tube ends and a passageway, an end element overmolded to at least one of the opposed tube ends, the end element having an annular end portion having a preselected length, and a connector element having a connector hub defining a receiving cavity. The preselected length of the annular end portion may be used to pre-control the axial location of stress concentration in the connector hub. A method of forming the high pressure medical connector tubing assembly includes providing a tube element comprising opposed tube ends and a passageway therethrough, overmolding an end element onto at least one of the opposed tube ends, providing a connector element comprising a connector hub defining a receiving cavity, and securing the tube end with the overmolded end element in the receiving cavity.
Abstract:
Systems and methods for delivering a medical fluid are disclosed. The system includes a fluid flow path, a fluid administration device adapted to deliver the medical fluid through the fluid flow path, and a controller in communication with the fluid administration device. The method includes using the system to determine a desired flow rate of the medical fluid at a distal end of the fluid flow path based upon at least a desired flow profile of the medical fluid at the distal end. The method further includes initiating a fluid delivery operation by delivering the medical fluid through the fluid flow path according to fluid delivery parameters provided to the fluid administration device by the controller. Information about the fluid delivery operation may be received at the controller which executes a control function to adjust the fluid delivery parameters based on the received information.
Abstract:
Syringe systems and flow control systems configured to detect information associated with a liquid material are described. The syringe systems may include a syringe body for housing the liquid material and an injector piston for expelling the liquid material out of the syringe through a discharge outlet at a distal end of the syringe body. Components of the syringe, such as an injector piston, may include sensors configured to measure and/or detect a property of the liquid material, such as concentration, pH, or radioactivity. The flow control system may include a pinch valve and a platen arranged about a fluid delivery channel. Flow within the fluid delivery channel may be controlled by increasing (squeezing the fluid delivery channel) or decreasing the distance between the pinch valve and the platen. Components of the flow control system may include detectors configured to detect properties of fluid in the fluid control channel.
Abstract:
A method and system for tailoring an injection protocol to an individual patient, wherein the injection protocol is administered in connection with a diagnostic imaging procedure. The method includes: administering a test injection of a fluid including a contrast enhancing fluid into the patient at an administration site; performing a test scan of one or more regions of interest of the patient as the fluid propagates through the patient to obtain scan data; determining from the scan data an enhancement output from each of the one or more regions of interest at a plurality of points in time as a result of the propagation of the fluid through the patient; and determining the injection protocol for the patient based at least in part upon the enhancement output from each of the one or more regions of interest at each of the plurality of points in time.
Abstract:
A fluid path set includes a first fluid line having a proximal end fluidly connectable to a source of a first fluid and a second fluid line having a proximal end fluidly connectable to a source of a second fluid. A flow mixing device is in fluid communication with distal ends of the first and second fluid lines. The flow mixing device includes a housing, a first fluid port provided for receiving the first fluid, and a second fluid port for receiving the second fluid. A mixing chamber is disposed within the housing and is in fluid communication with the first and second fluid ports. A third fluid port in fluid communication with the mixing chamber for discharging a mixed solution of the first and second fluids. A turbulent flow inducing member is disposed within the mixing chamber for promoting turbulent mixing of the first and second fluids.
Abstract:
A pharmaceutical transport container includes a first body portion adapted to receive at least a portion of a pharmaceutical vial, a second body portion removably engaged with the first body portion to fully enclose the vial, and a flexible ring positioned in an interior cavity of the second body portion and configured to flex between a relaxed state and a radially-outward extended state. The pharmaceutical transport container may also include a removable end cap having a receiving chamber to receive the first body portion, and/or a guide tab extending from an exterior surface of the second body portion to engage a guide slot defined in a fluid injection system docking station, whereby the transport container translates axially and rotationally into the docking station to establish a fluid connection between the vial and a fluid connector mechanism or element disposed within the docking station.