Abstract:
In one embodiment, the present invention includes a method for forming a logic device, including forming an n-type semiconductor device over a silicon (Si) substrate that includes an indium gallium arsenide (InGaAs)-based stack including a first buffer layer, a second buffer layer formed over the first buffer layer, a first device layer formed over the second buffer layer. Further, the method may include forming a p-type semiconductor device over the Si substrate from the InGaAs-based stack and forming an isolation between the n-type semiconductor device and the p-type semiconductor device. Other embodiments are described and claimed.
Abstract:
Embodiments of the present disclosure provide contact techniques and configurations for reducing parasitic resistance in nanowire transistors. In one embodiment, an apparatus includes a semiconductor substrate, an isolation layer formed on the semiconductor substrate, a channel layer including nanowire material formed on the isolation layer to provide a channel for a transistor, and a contact coupled with the channel layer, the contact being configured to surround, in at least one planar dimension, nanowire material of the channel layer and to provide a source terminal or drain terminal for the transistor.
Abstract:
An embodiment uses a very thin layer nanostructure (e.g., a Si or SiGe fin) as a template to grow a crystalline, non-lattice matched, epitaxial (EPI) layer. In one embodiment the volume ratio between the nanostructure and EPI layer is such that the EPI layer is thicker than the nanostructure. In some embodiments a very thin bridge layer is included between the nanostructure and EPI. An embodiment includes a CMOS device where EPI layers covering fins (or that once covered fins) are oppositely polarized from one another. An embodiment includes a CMOS device where an EPI layer covering a fin (or that once covered a fin) is oppositely polarized from a bridge layer covering a fin (or that once covered a fin). Thus, various embodiments are disclosed from transferring defects from an EPI layer to a nanostructure (that is left present or removed). Other embodiments are described herein.
Abstract:
A III-N semiconductor channel is formed on a III-N transition layer formed on a (111) or (110) surface of a silicon template structure, such as a fin sidewall. In embodiments, the silicon fin has a width comparable to the III-N epitaxial film thicknesses for a more compliant seeding layer, permitting lower defect density and/or reduced epitaxial film thickness. In embodiments, a transition layer is GaN and the semiconductor channel comprises Indium (In) to increase a conduction band offset from the silicon fin. In other embodiments, the fin is sacrificial and either removed or oxidized, or otherwise converted into a dielectric structure during transistor fabrication. In certain embodiments employing a sacrificial fin, the III-N transition layer and semiconductor channel is substantially pure GaN, permitting a breakdown voltage higher than would be sustainable in the presence of the silicon fin.
Abstract:
Semiconductor devices having germanium active layers with underlying parasitic leakage barrier layers are described. For example, a semiconductor device includes a first buffer layer disposed above a substrate. A parasitic leakage barrier is disposed above the first buffer layer. A second buffer layer is disposed above the parasitic leakage barrier. A germanium active layer is disposed above the second buffer layer. A gate electrode stack is disposed above the germanium active layer. Source and drain regions are disposed above the parasitic leakage barrier, on either side of the gate electrode stack.
Abstract:
Embodiments include epitaxial semiconductor stacks for reduced defect densities in III-N device layers grown over non-III-N substrates, such as silicon substrates. In embodiments, a metamorphic buffer includes an AlxIn1-xN layer lattice matched to an overlying GaN device layers to reduce thermal mismatch induced defects. Such crystalline epitaxial semiconductor stacks may be device layers for HEMT or LED fabrication, for example. System on Chip (SoC) solutions integrating an RFIC with a PMIC using a transistor technology based on group III-nitrides (III-N) capable of achieving high Ft and also sufficiently high breakdown voltage (BV) to implement high voltage and/or high power circuits may be provided on the semiconductor stacks in a first area of the silicon substrate while silicon-based CMOS circuitry is provided in a second area of the substrate.
Abstract translation:实施例包括用于在诸如硅衬底的非III-N衬底上生长的III-N器件层中的缺陷密度降低的外延半导体堆叠。 在实施例中,变质缓冲器包括与上覆GaN器件层匹配的Al x In 1-x N层晶格以减少热失配引起的缺陷。 这种结晶外延半导体叠层可以是用于例如HEMT或LED制造的器件层。 使用基于能够实现高Ft的III族氮化物(III-N)的晶体管技术并且还具有足够高的击穿电压(BV)来实现高电压和/或高电平的片上系统(SoC)解决方案集成RFIC与PMIC 电源电路可以设置在硅衬底的第一区域中的半导体堆叠上,而硅基CMOS电路设置在衬底的第二区域中。
Abstract:
An apparatus including a device including a channel material having a first lattice structure on a well of a well material having a matched lattice structure in a buffer material having a second lattice structure that is different than the first lattice structure. A method including forming a trench in a buffer material; forming an n-type well material in the trench, the n-type well material having a lattice structure that is different than a lattice structure of the buffer material; and forming an n-type transistor. A system including a computer including a processor including complimentary metal oxide semiconductor circuitry including an n-type transistor including a channel material, the channel material having a first lattice structure on a well disposed in a buffer material having a second lattice structure that is different than the first lattice structure, the n-type transistor coupled to a p-type transistor.
Abstract:
Embodiments of an apparatus and methods for providing three-dimensional complementary metal oxide semiconductor devices comprising modulation doped transistors are generally described herein. Other embodiments may be described and claimed, which may include a modulation doped heterostructure, wherein the modulation doped heterostructure may comprise an active portion having a first bandgap and a delta doped portion having a second bandgap.
Abstract:
A die includes a semiconductive prominence and a surface-doped structure on the prominence. The surface-doped structure makes contact with contact metallization. The prominence may be a source- or drain contact for a transistor. Processes of making the surface-doped structure include wet- vapor- and implantation techniques, and include annealing techniques to drive in the surface doping to only near-surface depths in the semiconductive prominence.
Abstract:
III-N transistors with recessed gates. An epitaxial stack includes a doped III-N source/drain layer and a III-N etch stop layer disposed between a the source/drain layer and a III-N channel layer. An etch process, e.g., utilizing photochemical oxidation, selectively etches the source/drain layer over the etch stop layer. A gate electrode is disposed over the etch stop layer to form a recessed-gate III-N HEMT. At least a portion of the etch stop layer may be oxidized with a gate electrode over the oxidized etch stop layer for a recessed gate III-N MOS-HEMT including a III-N oxide. A high-k dielectric may be formed over the oxidized etch stop layer with a gate electrode over the high-k dielectric to form a recessed gate III-N MOS-HEMT having a composite gate dielectric stack.