摘要:
A method for forming a bottom spin valve sensor having a synthetic antiferromagnetic pinned (SyAP) layer, antiferromagnetically coupled to a pinning layer, in which one of the layers of the SyAP is formed as a three layer lamination that contains a specularly reflecting oxide layer of FeTaO. The sensor formed according to this method has an extremely high GMR ratio and exhibits good pinning strength.
摘要:
A high performance specular free layer bottom spin valve is disclosed. This structure made up the following layers: NiCr/MnPt/CoFe/Ru/CoFe/Cu/free layer/Cu/Ta or TaO/Al2O3. A key feature is that the free layer is made of a very thin CoFe/NiFe composite layer. Experimental data confirming the effectiveness of this structure is provided, together with a method for manufacturing it and, additionally, its longitudinal bias leads.
摘要:
A magnetoresistive (MR) sensor element and a method for fabricating the magnetoresistive (MR) sensor element. There is first provided a substrate. There is then formed over the substrate a first shield layer. There is then formed upon the first shield layer a first dielectric spacer layer. There is then formed upon the first dielectric spacer layer a patterned magnetoresistive (MR) layer. There is then formed adjacent to and electrically communicating with a pair of opposite ends of the patterned magnetoresistive (MR) layer a pair of patterned conductor lead layers to define a trackwidth of the patterned magnetoresistive (MR) layer. There is then formed upon the pair of patterned conductor lead layers and upon the patterned magnetoresistive (MR) layer at the trackwidth of the patterned magnetoresistive (MR) layer a blanket second dielectric spacer layer. Finally, there is then formed upon the blanket second dielectric spacer layer a second shield layer, where a first thickness of the blanket second dielectric spacer layer separating a patterned conductor lead layer within the pair of patterned conductor lead layers from the second shield layer is greater than a second thickness of the blanket second dielectric spacer layer separating the patterned magnetoresistive (MR) layer from the second shield layer within the trackwidth of the patterned magnetoresistive (MR) layer. The method contemplates a magnetoresistive (MR) sensor element fabricated in accord with the method.
摘要:
A method for device fabrication disclosed is a self-aligned process. The device formed has small vertical as well as horizontal dimensions. The device region is surrounded by a deep oxide trench which has nearly vertical sidewalls. The deep trench extends from the epitaxial silicon surface through N+ subcollector region into the P substrate. The width of the deep trench is about 2 .mu.m to 3.0 .mu.m. A shallow oxide trench extending from the epitaxial silicon surface to the upper portion of the N+ subcollector separates the base and collector contact. The surface of the isolation regions and the silicon where the transistor is formed is coplanar. As shown in FIG. 1, the fabricated bipolar transistor has a mesa-type structure. The transistor base dimension is only slightly larger than the emitter. This small base area results in low collector-base capacitance which is a very important parameter in ultra-high performance integrated circuit devices. Contact to the transistor base in the disclosed structure is achieved by a thick heavily boron doped polysilicon layer which surrounds the emitter and makes lateral contact to the active base.
摘要:
A method for making wide, deep recessed oxide isolation trenches in silicon semiconductor substrates. A semi-conductor substrate is selectively etched to produce a spaced succession of narrow, shallow trenches separated by narrow silicon mesas. Silicon oxide is chemical-vapor-deposited on the horizontal and vertical surfaces of the etched structure to a thickness equalling the width of a desired silicon oxide mask. The mask is used for etching multiple deep trenches in the substrate, the trenches being separated by thin walls of silicon. The thickness of the walls is uniformly equal to and determined by the thickness of the deposited silicon oxide mask.The deposited silicon oxide is reactively ion etched away from the horizontal surfaces, leaving the oxide only on the sidewalls of the shallow trenches. The silicon is deeply etched, using the remaining oxide as a mask. Boron is ion implanted and the resulting structure is thermally oxidized sufficiently to completely oxidize the silicon under the deposited oxide mask and to oxidize the silicon surfaces at the bottoms of the trenches. The remaining trench volume is filled in with chemical-vapor-deposited silicon dioxide.
摘要:
A STT-RAM MTJ is disclosed with a composite tunnel barrier comprised of a CoMgO layer that contacts a pinned layer and a MgO layer which contacts a free layer. A CoMg layer with a Co content between 20 and 40 atomic % is deposited on the pinned layer and is then oxidized to produce Co nanoconstrictions within a MgO insulator matrix. The nanoconstrictions control electromigration of Co into an adjoining MgO layer. The free layer may comprise a nanocurrent channel (NCC) layer such as FeSiO or a moment dilution layer such as Ta between two ferromagnetic layers. Furthermore, a second CoMgO layer or a CoMgO/MgO composite may serve as a perpendicular Hk enhancing layer formed between the free layer and a cap layer. One or both of the pinned layer and free layer may exhibit in-plane anisotropy or perpendicular magnetic anisotropy.
摘要:
A STT-RAM MTJ is disclosed with a MgO tunnel barrier formed by natural oxidation process. A Co10Fe70B20/NCC/Co10Fe70B20, Co10Fe70B20/NCC/Co10Fe70B20/NCC, or Co10Fe70B20/NCC/Co10Fe70B20/NCC/Co10Fe70B20 free layer configuration where NCC is a nanocurrent channel layer made of Fe(20%)-SiO2 is used to minimize Jc0 while enabling higher thermal stability, write voltage, read voltage, Ho, and Hc values that satisfy 64 Mb design requirements. The NCC layer is about 10 Angstroms thick to match the minimum Fe(Si) grain diameter size. The MTJ is annealed with a temperature of about 330° C. to maintain a high magnetoresistive ratio while maximizing Hk⊥(interfacial) for the free layer thereby reducing Heff and lowering the switching current. The Co10Fe70B20 layers are sputter deposited with a low pressure process with a power of about 15 Watts and an Ar flow rate of 40 standard cubic centimeters per minute to lower Heff for the free layer.
摘要:
A STT-RAM MTJ that minimizes spin-transfer magnetization switching current (Jc) is disclosed. The MTJ has a MgO tunnel barrier layer formed with a natural oxidation process to achieve a low RA (10 ohm-um2) and a Fe or Fe/CoFeB/Fe free layer which provides a lower intrinsic damping constant than a CoFeB free layer. A Fe, FeB, or Fe/CoFeB/Fe free layer when formed with a MgO tunnel barrier (radical oxidation process) and a CoFeB AP1 pinned layer in a MRAM MTJ stack annealed at 360° C. provides a high dR/R (TMR)>100% and a substantial improvement in read margin with a TMR/Rp_cov=20. High speed measurement of 100 nm×200 nm oval STT-RAM MTJs has shown a Jc0 for switching a Fe free layer is one half that for switching an amorphous CO40Fe40B20 free layer. A Fe/CoFeB/Fe free layer configuration allows the Hc value to be increased for STT-RAM applications.
摘要:
A STT-RAM MTJ that minimizes spin-transfer magnetization switching current (Jc) while achieving a high dR/R is disclosed. The MTJ has a MgO tunnel barrier formed by natural oxidation to achieve a low RA, and a CoFeB/FeSiO/CoFeB composite free layer with a middle nanocurrent channel layer to minimize Jc0. There is a thin Ru capping layer for a spin scattering effect. The reference layer has a shape anisotropy and Hc substantially greater than that of the free layer to establish a “self-pinned” state. The free layer, capping layer and hard mask are formed in an upper section of a nanopillar that has an area substantially less than a lower pedestal section which includes a bottom electrode, reference layer, seed layer, and tunnel barrier layer. The reference layer is comprised of an enhanced damping constant material that may be an insertion layer, and the free layer has a low damping constant.
摘要:
A bottom spin-valve GMR sensor has been fabricated that has ultra-thin layers of high density and smoothness. In addition, these layers are inherently furnished with sub-monolayer thick oxygen surfactant layers. The sensor is fabricated using a method in which the layers are sputtered in a mixture of Ar and O2. A particularly novel feature of the method is the use of a sputtering chamber with an ultra-low base pressure and correspondingly ultra-low pressure mixtures of Ar and O2 sputtering gas (