摘要:
An optical scanning probe assembly for microscopic guide optic scanning and inspection of tissues includes an outer housing having a spring element for a scanning motor. The spring element is formed as a hollow tube configured to receive an optical guide, where the hollow tube has a mechanical stiffness larger than the optical guide to be received. The assembly further includes a lens system and a deflector configured to deflect the distal end of the hollow tube in directions transverse to the longitudinal extension of the hollow tube, so as to form an optical scan pattern.
摘要:
The present invention relates to an examination apparatus for providing information about an object and a method for providing information about an object of interest. In order to improve the visual reception of information relating to the object, an examination apparatus is provided that comprises an examination arrangement and a control unit with at least a first interface and a second interface. The examination arrangement is adapted to detect object data from at least one region of interest of an object and to provide the object data to the control unit. Further, the control unit is adapted to compute object data into object information and to transform at least a part of the object information into image data (32, 36). Further, the control unit is arranged to extract pre-determined indicative data from the object information and to transform the indicative data into graphical advisory data (40). The first interface is configured such to provide the image data to a display unit (20) in order to display the image data (32, 36) to the user. The second interface is configured such to provide a signal for an ambient advice display arrangement in order to provide the graphical advisory data (40) to the user.
摘要:
Optical probes are provided for miniature applications, e.g. medical inspections and procedures or in industrial inspections. The probe comprises an optical guide, a first lens system mounted on a distal end portion of the optical guide for focusing light from the optical guide, an actuator for displacing the distal end portion and the first lens system to enable optical scanning, and a second lens system fixed inside the probe to receive radiation from the first lens system. The second lens system is selected to enable a deflection of radiation from the first lens system in a direction corresponding to a direction of displacement of the first lens system by the actuator. The second lens system can be a cheap negative lens, and the invention is thereby particularly useful for increasing the field of view (FOV) of cheap, disposable optical probes.
摘要:
The present invention relates to an apparatus 100 and, a method and a computer program for determining a parameter indicative of a tissue type of an associated tissue 116. In particular, the invention relates to an apparatus 100 comprising a spectrometer 102, which spectrometer comprises a light source 104 and a detector 106, 108 arranged to measure an optical spectrum. This enables determination of a first parameter being indicative of a bile concentration. As the inventors of the present invention have made the insight that bile concentration may serve as a discriminative feature for different tissue types, the apparatus is arranged to determine a second parameter indicative of a tissue type based on a concentration of bile. According to a specific embodiment, the apparatus further comprises an interventional device 112.
摘要:
The present invention relates to an optical probe (1) suitable for miniature applications. An example application is a fiber-based confocal miniaturized microscope. The optical probe comprises a coil-based actuation system (9, 10) comprising drive coils (9) capable of displacing the distal end (3) of an optical guide (2) housed (4) by the optical probe. The probe makes use of a feedback loop which alternate between driving the displacement of the optical guide by driving a current through the drive coils and switching off the current through the drive coils, and while the drive current being switched off, measure the speed of the distal end of the optical guide. The measured speed is compared to the set-point speed, and if a difference is detected, the drive current is adjusted to eliminate, or at least bring down, this difference.
摘要:
The present invention relates to an apparatus, a method and a computer program for determining a lipid-water ratio and a scattering parameter of a sample. In particular, the invention relates to an apparatus comprising a light source and a detector arranged to measure an optical parameter at various wavelengths, where the wavelengths are selected so that at two of the wavelengths the absorption coefficients for both water and lipids are substantially identical. This enables determination of a scattering parameter. A further measurement at a third wavelength enables determination of a water-lipid ratio. According to a specific embodiment, the light source and the detector are arranged in relation to an interventional device, so as to be able to examine a tissue in terms of lipid-water ratio and scattering during an intervention.
摘要:
Re-calibration of pre-recorded images during interventions is proposed, utilizing an interventional system comprising an imaging device providing images of an object, a needle device, and a processing device. The needle device comprises a sensor for providing data corresponding to tissue properties. The processing device is adapted to perform an overlay registration of pre-recorded images and live images provided by the imaging device, utilizing the data from the sensor. Thus, the accuracy of an overlay of images is increased.
摘要:
The invention relates to optical probes for miniature applications, e.g. medical inspections and procedures or in industrial inspections, in particular a probe applying a confocal scanning-scanning endoscope. The probe comprises an optical guide (2), a first lens system mounted (4) on a distal end portion (2A) of the optical guide for focusing light from the optical guide, actuation means (6,7) for displacing the distal end portion and the first lens system to enable optical scanning, and a second lens system (9) fixed inside the probe to receive radiation from the first lens system. The second lens system is selected to enable a deflection of radiation from the first lens system in a direction corresponding to a direction of displacement of the first lens system by the actuation means. The second lens system can be a cheap negative lens, and the invention is thereby particularly useful for increasing the field of view (FOV) cheap, disposable optical probes.
摘要:
The invention relates to an optical image probe(20) for particularly suited for miniature application e.g. in-vivo. A fluid lens(5) is positioned a housing (19),the fluid lens having a changeable optical power. An image collector (40) is positioned within the housing, the collector being arranged on an optical path of the fluid lens, the collector being displaceable along the said optical path by an actuator (42, 70, 80, 90) in various ways. It is highly advantageous in obtaining a compact optical image probe and which simultaneously has a high zoom factor. Due the possible displacement of the image collector and the changeable optical power of the fluid lens, and cooperation between these two elements, it is possible to obtain a compact endoscope with a wide dynamic range of zoom factor with satisfactory focusing properties.
摘要:
A device or support, system and method are provided for precisely targeted and/or highly controlled interaction with a targeted cell or tissue in a body, with the support providing an ergonomic connecting interface for selectively connecting the support to a cell or tissue with at least minimal adverse affect to such cell or tissue, the system providing a remote facility that may be operatively associated with the support, and the method providing steps for employing the support and/or system so as to, inter alia, improve treatment, diagnostic and/or monitoring techniques and increase sensitivity and specificity with respect to interacting with, for example, diseased or abnormal cells or tissue without adversely effecting surrounding healthy cells or tissue, and/or the body in general.