Abstract:
Systems and methods for a high output, high color quality light are disclosed. In some embodiments, such a light may include a light fixture including one or more LEDs configured to output a cumulative light output; wherein the cumulative light output comprises an intensity of greater than or equal to 10,000 lumens; and wherein the cumulative light output comprises a CRI of at least 90.
Abstract:
In one aspect, lighting devices are described herein. A lighting device comprises an optic housing, a waveguide optic and an optical insert positioned in the housing, the optical insert comprising one or more reflective sidewalls for redirecting light emitted from the waveguide optic. The waveguide optic comprises sidewalls and a light extraction face including extraction elements, wherein the reflective sidewalls of the optical insert cover at least a portion of the sidewalls of the waveguide optic.
Abstract:
An LED lensing arrangement for lighting fixtures includes (1) a rigid light-transmissive outer structure having an outwardly-facing light-exit surface and an outer-structure light-input surface, (2) an optically-clear molded polymeric inner structure having a light-entrance surface and a light-output surface which is adhered to the outer-structure light-input surface, the inner structure being of a material which is pourable upon molding, one example being a liquid silicone rubber (LSR) material, and (3) at least one LED light source secured with respect to and optically coupled to the inner-structure light-entrance surface.
Abstract:
In one aspect, luminaires are described herein enabling independent thermal management of driver and LED assemblies. For example, a luminaire comprises a driver assembly vertically integrated with a LED assembly, the driver assembly comprising a driver heatsink having an interior in which a circuit board assembly is positioned, and the LED assembly comprising an array of LEDs and LED heatsink, wherein a barrier is positioned between the driver heatsink and the LED heatsink, separating convective cooling of the driver assembly from convective cooling of the LED assembly.
Abstract:
An LED light fixture includes a heat-sink, a circuit board thereon with a plurality of spaced LED light sources, and a one-piece optical member with a plurality of secondary lenses over corresponding LED light sources and having a lens flange surrounding the lenses and integral with each lens. The optical member includes a polymeric carrier portion surrounding the lenses, overlapping with and molded onto the lens flanges across such overlapping, and extending therefrom to a peripheral edge portion. The optical member has an outer surface infused with an ultraviolet inhibitor to increase long-term weathering performance. The infused outer surface includes an outer layer of each lens and extends to form an outer layer of the lens flanges and therebeyond to form an outer layer of the carrier portion. The invention also includes a method of manufacturing such infused optical member.
Abstract:
In one aspect, luminaires are described herein having sensor modules integrated therein. In one aspect, a luminaire described herein comprises a light emitting face including a LED assembly. A sensor module is integrated into the luminaire at a position at least partially overlapping the light emitting face. In another aspect, a luminaire described herein comprises a LED assembly and a driver assembly. A sensor module is integrated into the luminaire along or more convective air current pathways cooling the LED assembly or driver assembly.
Abstract:
A lighting device comprises a body of optically transmissive material exhibiting a total internal reflection characteristic, the body further comprising a light input surface for receiving light, a light extraction portion spaced from the light input surface, a light transmission portion disposed between the light input surface and the light extraction portion, and at least one light deflection surface for deflecting light toward the light extraction portion. Further in accordance with this aspect the light extraction portion comprises a first extraction surface for extracting light deflected by the at least one light deflection surface out of the body and a second extraction surface for extracting light other than light deflected by the at least one light deflection surface out of the body.
Abstract:
A LED fixture is provided, the lamp comprising a LED board having a thermally conductive periphery, the LED board comprising at least one LED operable to emit light when energized through an electrical path from a base; and a heat sink assembly thermally coupled to the thermally conductive periphery.
Abstract:
An LED floodlight fixture LED light fixture including a plurality of heat-sink-mounted LED-array modules, each module engaging an LED-adjacent surface of a heat-sink base for transfer of heat from the module, and at least one venting aperture through the heat-sink base to provide air ingress to the heat-dissipating surfaces adjacent to the aperture. The LED light fixture may include a plurality of heat sinks, each heat sink with its own heat-dissipating surfaces and heat-sink base which has one of the LED-array modules engaged thereon. The heat-sink base is wider than the module thereon such that the heat-sink base includes a beyond-module portion. The venting aperture(s) is/are through the beyond-module portion of the heat-sink base. The inventive light fixture may include a housing and an LED assembly which includes the heat-sink-mounted LED-array modules. The LED assembly and the housing form a venting gap therebetween to provide air ingress along the heat-sink base to the heat-dissipating surfaces.
Abstract:
A LED lamp includes a plurality of red LEDs and a plurality of blue LEDs, a phosphor covering at least the plurality of blue LEDs, where the lamp has an LPW of at least 200 in a steady state operation.