Abstract:
Analog processors for solving various computational problems are provided. Such analog processors comprise a plurality of quantum devices, arranged in a lattice, together with a plurality of coupling devices. The analog processors further comprise bias control systems each configured to apply a local effective bias on a corresponding quantum device. A set of coupling devices in the plurality of coupling devices is configured to couple nearest-neighbor quantum devices in the lattice. Another set of coupling devices is configured to couple next-nearest neighbor quantum devices. The analog processors further comprise a plurality of coupling control systems each configured to tune the coupling value of a corresponding coupling device in the plurality of coupling devices to a coupling. Such quantum processors further comprise a set of readout devices each configured to measure the information from a corresponding quantum device in the plurality of quantum devices.
Abstract:
Techniques for improving the performance of a quantum processor are described. Some techniques employ improving the processor topology through design and fabrication, reducing intrinsic/control errors, reducing thermally-assisted errors and methods of encoding problems in the quantum processor for error correction.
Abstract:
Superconductive interconnection structures providing continuous, uninterrupted superconducting signal paths between a superconducting chip and a superconducting chip carrier are described. The superconductive interconnection structures employ superconducting solder bumps and pillars of Under Bump Metal (“UBM”). The superconductive interconnection structures are employed in a two-stage solder bumping process in which the superconducting chip is first bonded to a testing module for screening and then bonded to a chip packaging module for operation. Either the testing module or the chip packaging module, or both, may include a multi-chip module for carrying multiple superconducting chips simultaneously.
Abstract:
Apparatus and methods enable active compensation for unwanted discrepancies in the superconducting elements of a quantum processor. A qubit may include a primary compound Josephson junction (CJJ) structure, which may include at least a first secondary CJJ structure to enable compensation for Josephson junction asymmetry in the primary CJJ structure. A qubit may include a series LC-circuit coupled in parallel with a first CJJ structure to provide a tunable capacitance. A qubit control system may include means for tuning inductance of a qubit loop, for instance a tunable coupler inductively coupled to the qubit loop and controlled by a programming interface, or a CJJ structure coupled in series with the qubit loop and controlled by a programming interface.
Abstract:
A superconducting integrated circuit has a first superconducting device with a first superconducting loop, where the first superconducting loop has a first superconducting trace in a first layer of the superconducting integrated circuit, and a second superconducting device with a second superconducting loop, where the second superconducting loop has a second superconducting trace in a second layer. The first superconducting loop crosses the second superconducting loop in a crossing region. At least a portion of each of the first and the second superconducting trace inside the crossing region is narrower than at least a portion of each of the traces outside the crossing region, and follows a respective circuitous path which is inductively proximate to at least a portion of the other path.
Abstract:
Topologies for analog computing systems may include cells of qubits which may implement a tripartite graph and cross substantially orthogonally. Qubits may have an H-shape or an l-shape, qubits may change direction within a cell. Topologies may be comprised of two or more different sub-topologies. Qubits may be communicatively coupled to non-adjacent cells by long-range couplers. Long-range couplers may change direction within a cell. A cell may have two or more different type of long-range couplers. A cell may have shifted qubits, more than one type of inter-cell couplers, more than one type of intra-cell couplers and long-range couplers.
Abstract:
Apparatus and methods enable active compensation for unwanted discrepancies in the superconducting elements of a quantum processor. A qubit may include a primary compound Josephson junction (CJJ) structure, which may include at least a first secondary CJJ structure to enable compensation for Josephson junction asymmetry in the primary CJJ structure. A qubit may include a series LC-circuit coupled in parallel with a first CJJ structure to provide a tunable capacitance. A qubit control system may include means for tuning inductance of a qubit loop, for instance a tunable coupler inductively coupled to the qubit loop and controlled by a programming interface, or a CJJ structure coupled in series with the qubit loop and controlled by a programming interface.
Abstract:
The systems, devices, articles, and methods described herein generally relate to analog computers, for example quantum processors comprising qubits, couplers, and, or cavities. Analog computers, for example quantum processor based computers, are the subject of various sources of error which can hinder operation, potentially reducing computational accuracy and speed. Sources of error can be broadly characterized, for example as i) a background susceptibility do to inherently characteristics of the circuitry design, ii) as an h/J ratio imbalance, iii) bit flip errors, iv) fidelity, and v) Anderson localization, and various combinations of the aforesaid.
Abstract:
Various techniques and apparatus permit fabrication of superconductive circuits. A superconducting integrated circuit comprising a superconducting stud via, a kinetic inductor, and a capacitor may be formed. Forming a superconducting stud via in a superconducting integrated circuit may include masking with a hard mask and masking with a soft mask. Forming a superconducting stud via in a superconducting integrated circuit may include depositing a dielectric etch stop layer. Interlayer misalignment in the fabrication of a superconducting integrated circuit may be measured by an electrical vernier. Interlayer misalignment in the fabrication of a superconducting integrated circuit may be measured by a chain of electrical verniers and a Wheatstone bridge. A superconducting integrated circuit with three or more metal layers may include an enclosed, matched, on-chip transmission line. A metal wiring layer in a superconducting integrated circuit may be encapsulated.
Abstract:
Analog processors for solving various computational problems are provided. Such analog processors comprise a plurality of quantum devices, arranged in a lattice, together with a plurality of coupling devices. The analog processors further comprise bias control systems each configured to apply a local effective bias on a corresponding quantum device. A set of coupling devices in the plurality of coupling devices is configured to couple nearest-neighbor quantum devices in the lattice. Another set of coupling devices is configured to couple next-nearest neighbor quantum devices. The analog processors further comprise a plurality of coupling control systems each configured to tune the coupling value of a corresponding coupling device in the plurality of coupling devices to a coupling. Such quantum processors further comprise a set of readout devices each configured to measure the information from a corresponding quantum device in the plurality of quantum devices.