Abstract:
A method of forming a semiconductor device comprising a fuse is provided including providing a semiconductor-on-insulator (SOI) structure comprising an insulating layer and a semiconductor layer formed on the insulating layer, forming raised semiconductor regions on the semiconductor layer adjacent to a central portion of the semiconductor layer and performing a silicidation process of the central portion of the semiconductor layer and the raised semiconductor regions to form a silicided semiconductor layer and silicided raised semiconductor regions.
Abstract:
A semiconductor structure includes a substrate, at least one electrically conductive pillar provided over the substrate and an electrically conductive structure provided over the substrate. The electrically conductive pillar includes an inner portion and an outer layer that is provided below the inner portion and lateral to the inner portion. The electrically conductive structure also includes an inner portion and an outer layer that is provided below the inner portion and lateral to the inner portion. The electrically conductive structure annularly encloses each of the at least one electrically conductive pillar. The outer layer of each of the at least one electrically conductive pillar contacts the outer layer of the electrically conductive structure. The outer layer of the at least one electrically conductive pillar and the outer layer of the electrically conductive structure are formed of different metallic materials.
Abstract:
A method of forming a semiconductor device structure includes providing a substrate with a semiconductor-on-insulator (SOI) configuration, the SOI substrate comprising a semiconductor layer formed on a buried oxide (BOX) layer which is disposed on a semiconductor bulk substrate, forming trench isolation structures delineating a first region and a second region within the SOI substrate, removing the semiconductor layer and the BOX layer in the first region for exposing the semiconductor bulk substrate within the first region, forming a first semiconductor device with an electrode in and over the exposed semiconductor bulk substrate in the first region, forming a second semiconductor device in the second region, the second semiconductor device comprising a gate structure disposed over the semiconductor layer and the BOX layer in the second region, and performing a polishing process for defining a common height level to which the electrode and the gate structure substantially extend.
Abstract:
The present disclosure provides methods of forming a masking pattern and a semiconductor device structure, wherein printed half pitches of, for example, about 20 nm or less may be formed. A method of forming a masking pattern is provided wherein an unpatterned mask layer is formed over a semiconductor device structure provided in and on an upper surface of a semiconductor substrate, and the unpatterned mask layer is patterned for forming the masking pattern over the semiconductor device structure. The unpatterned mask layer is patterned by forming a dummy pattern having at least one recess on the unpatterned mask layer, forming a first sidewall spacer structure adjacent to sidewalls of the recess, removing the dummy pattern, forming a second sidewall spacer structure on the first sidewall spacer structure, removing the first sidewall spacer structure, and etching the unpatterned mask layer in alignment with the second sidewall spacer structure.
Abstract:
A semiconductor device comprises a first and second circuit element. The first circuit element comprises a first electrode structure including a first high-k dielectric layer, the first high-k dielectric layer having a first thickness and comprising hafnium. The second circuit element comprises a second electrode structure that includes a second high-k dielectric layer having a ferroelectric behavior, wherein the second high-k dielectric layer has a second thickness and comprises hafnium, and wherein the second thickness is greater than the first thickness.
Abstract:
The present disclosure provides a method of forming a semiconductor circuit element and a semiconductor circuit element, wherein the semiconductor circuit element is formed on the basis of a replacement gate process replacing a dummy gate structure of a semiconductor device of the semiconductor circuit element by a gate oxide structure and a gate electrode material, wherein the gate oxide structure comprises a high-k material that is in the ferroelectric phase. In some illustrative embodiments herein, a semiconductor device is provided, the semiconductor device having a gate structure disposed over an active region of a semiconductor substrate. Herein, the gate structure comprises a spacer structure and a dummy gate structure which is replaced by a gate oxide structure and a gate electrode material, wherein the gate oxide structure comprises a ferroelectric high-k material.
Abstract:
A semiconductor device includes a high-k metal gate electrode structure that is positioned above an active region, has a top surface that is positioned at a gate height level, and includes a high-k dielectric material and an electrode metal. Raised drain and source regions are positioned laterally adjacent to the high-k metal gate electrode structure and connect to the active region, and a top surface of each of the raised drain and source regions is positioned at a contact height level that is below the gate height level. An etch stop layer is positioned above the top surface of the raised drain and source regions and a contact element connects to one of the raised drain and source regions, the contact element extending through the etch stop layer and a dielectric material positioned above the high-k metal gate electrode structure and the raised drain and source regions.
Abstract:
An integrated circuit device includes a PMOS transistor and an NMOS transistor. The PMO transistor includes a gate electrode, at least one source/drain region, a first sidewall spacer positioned adjacent the gate electrode of the PMOS transistor, and a multi-part second sidewall spacer positioned adjacent the first sidewall spacer of the PMOS transistor, wherein the multi-part second sidewall spacer includes an upper spacer and a lower spacer. The NMOS transistor includes a gate electrode, at least one source/drain region, a first sidewall spacer positioned adjacent the gate electrode of the NMOS transistor, and a single second sidewall spacer positioned adjacent the first sidewall spacer of the NMOS transistor. A metal silicide region is positioned on each of the gate electrodes and on each of the at least one source/drain regions of the PMOS and the NMOS transistors.
Abstract:
Disclosed herein are various methods of forming replacement gate structures and conductive contacts on semiconductor devices and devices incorporating the same. One exemplary device includes a plurality of gate structures positioned above a semiconducting substrate, at least one sidewall spacer positioned proximate respective sidewalls of the gate structures, and a metal silicide region in a source/drain region of the semiconducting substrate, the metal silicide region extending laterally so as to contact the sidewall spacer positioned proximate each of the gate structures. Furthermore, the device also includes, among other things, a conductive contact positioned between the plurality of gate structures, the conductive contact having a lower portion that conductively contacts the metal silicide region and an upper portion positioned above the lower portion, wherein the lower portion is laterally wider than the upper portion and extends laterally so as to contact the sidewall spacers positioned proximate each of the gate structures.
Abstract:
The present disclosure relates to manufacturing techniques and respective semiconductor devices in which the capping material of gate electrode structures may be removed together with portions of the capping material of resistors on the basis of a highly controllable directional etch process, wherein raised drain and source regions may be protected on the basis of a fill material.