Abstract:
Semiconductor devices with controllers under stacks of semiconductor packages and associated systems and methods are disclosed herein. In one embodiment, a semiconductor device includes a package substrate, a controller attached to the package substrate, and at least two semiconductor packages disposed over the controller. Each semiconductor package includes a plurality of semiconductor dies. The semiconductor device further includes an encapsulant material encapsulating the controller and the at least two semiconductor packages.
Abstract:
Stacked semiconductor die assemblies with die support members and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a package substrate, a first semiconductor die attached to the package substrate, and a support member attached to the package substrate. The support member can be separated from the first semiconductor die, and a second semiconductor die can have one region coupled to the support member and another region coupled to the first semiconductor die.
Abstract:
Semiconductor devices with controllers under stacks of semiconductor packages and associated systems and methods are disclosed herein. In one embodiment, a semiconductor device includes a package substrate, a controller attached to the package substrate, and at least two semiconductor packages disposed over the controller. Each semiconductor package includes a plurality of semiconductor dies. The semiconductor device further includes an encapsulant material encapsulating the controller and the at least two semiconductor packages.
Abstract:
A semiconductor device assembly includes a substrate having a plurality of external connections, a first shingled stack of semiconductor dies disposed directly over a first location on the substrate and electrically coupled to a first subset of the plurality of external connections, and a second shingled stack of semiconductor dies disposed directly over a second location on the substrate and electrically coupled to a second subset of the plurality of external connections. The semiconductor device assembly further includes an encapsulant at least partially encapsulating the substrate, the first shingled stack and the second shingled stack.
Abstract:
A semiconductor device assembly includes a substrate having a plurality of external connections, a first shingled stack of semiconductor dies disposed directly over a first location on the substrate and electrically coupled to a first subset of the plurality of external connections, and a second shingled stack of semiconductor dies disposed directly over a second location on the substrate and electrically coupled to a second subset of the plurality of external connections. The semiconductor device assembly further includes an encapsulant at least partially encapsulating the substrate, the first shingled stack and the second shingled stack.
Abstract:
Semiconductor devices with controllers under stacks of semiconductor packages and associated systems and methods are disclosed herein. In one embodiment, a semiconductor device includes a package substrate, a controller attached to the package substrate, and at least two semiconductor packages disposed over the controller. Each semiconductor package includes a plurality of semiconductor dies. The semiconductor device further includes an encapsulant material encapsulating the controller and the at least two semiconductor packages.
Abstract:
Semiconductor devices with controllers under stacks of semiconductor packages and associated systems and methods are disclosed herein. In one embodiment, a semiconductor device includes a package substrate, a controller attached to the package substrate, and at least two semiconductor packages disposed over the controller. Each semiconductor package includes a plurality of semiconductor dies. The semiconductor device further includes an encapsulant material encapsulating the controller and the at least two semiconductor packages.
Abstract:
Semiconductor device packages include a stack of semiconductor memory devices positioned over an interposer substrate, a controller element, and a redistribution substrate positioned laterally adjacent to the controller element. At least a portion of the controller element is positioned directly between the stack and the interposer substrate. The controller element is operatively connected to the semiconductor memory devices of the stack through the redistribution substrate and the interposer substrate. Methods of manufacturing a semiconductor device package include positioning a redistribution substrate laterally adjacent to a controller element and attaching the redistribution substrate and the controller element to an interposer substrate. A stack of semiconductor memory devices is positioned over the controller element and the redistribution substrate. The controller element is operatively connected to the semiconductor memory devices of the stack through the redistribution substrate and the interposer substrate.
Abstract:
Microelectronic devices, associated assemblies, and associated methods are disclosed herein. For example, certain aspects of the invention are directed toward a microelectronic device that includes a microfeature workpiece having a side and an aperture in the side. The device can further include a workpiece contact having a surface. At least a portion of the surface of the workpiece contact can be accessible through the aperture and through a passageway extending between the aperture and the surface. Other aspects of the invention are directed toward a microelectronic support device that includes a support member having a side carrying a support contact that can be connectable to a workpiece contact of a microfeature workpiece. The device can further include recessed support contact means carried by the support member. The recessed support contact means can be connectable to a second workpiece contact of the microfeature workpiece.
Abstract:
Various embodiments of semiconductor assemblies with multi-level substrates and associated methods of manufacturing are described below. In one embodiment, a substrate for carrying a semiconductor die includes a first routing level, a second routing level, and a conductive via between the first and second routing levels. The conductive via has a first end proximate the first routing level and a second end proximate the second routing level. The first routing level includes a terminal and a first trace between the terminal and the first end of the conductive via. The second routing level includes a second trace between the second end of the conductive via and a ball site. The terminal of the first routing level and the ball site of the second routing level are both accessible for electrical connections from the same side of the substrate.