Abstract:
A three-dimensional memory device includes a plurality of conductive layers and insulating layers alternately formed to define a multi-layer stacked structure. The multi-layer stacked structure includes a stair region and an non-stair region, the stair region includes a plurality of steps, each step includes an immediately-adjacent pair of the conductive layers and insulating layers. A plurality of memory structures are located in the non-stair region, and each memory structure passes through the conductive layers and the insulating layers. A fishbone dielectric structure includes a main bone and a plurality of side bones extending from the main bone in the stair region, wherein the main bone crosses the memory structures in the non-stair region.
Abstract:
A memory device and a method for manufacturing the same are provided. A memory device includes a drain pillar structure, a source pillar structure, a charge trapping structure, a vertical channel structure and a gate structure. The drain pillar structure is formed in a first opening. The source pillar structure is formed in a second opening. The vertical channel structure and the vertical channel structure are formed in a hole partially overlapping the first opening and the second opening. The vertical channel structure is divided into two arc channel parts by the drain pillar structure and the source pillar structure. The gate structure surrounds the drain pillar structure, the source pillar structure and the vertical channel structure.
Abstract:
A three-dimensional memory device includes a substrate, conductive layers and insulating layers, a storage layer, a first channel, a second channel and a first conductive plug. The conductive layers and insulating layers are alternately stacked over the substrate to form a multi-layer stacked structure. The storage layer penetrates through the multi-layer stacked structure, and has a first string portion and a second string portion that are spaced from each other. The first channel is located on a lateral side of the first string portion. The second channel is located on a lateral side of the second string portion. The first channel and the second channel have an upper channel portion and a lower channel portion. The first conductive plug is interconnected between the upper channel portion and the lower channel portion.
Abstract:
An integrated circuit includes 3D memory blocks and 3D capacitor blocks. The 3D capacitor comprises a plurality of stacks of conductive strips alternating with insulating strips, and a first terminal connected to conductive strips in consecutive levels in one or more stacks, whereby the conductive strips act as a first plate of the 3D capacitor. A second terminal is insulated from the first terminal, either connected to conductive strips in consecutive levels in another or other stacks, or connected to a plurality of pillars. No intervening conductive strip is disposed between the conducive strips in consecutive levels.
Abstract:
The area consumed by switching transistors for a 3D NAND memory array can be reduced with 3D voltage switching transistors with reduced aggregate area in comparison with 2D voltage switching transistors such as transistors in the substrate. The integrated circuit comprises a 3D NAND array of memory transistors; a plurality of bit lines, with different ones of the plurality of bit lines electrically coupled to different parts of the 3D NAND array; and a plurality of transistor pairs with a stack of semiconductor layers. Different layers in the stack of semiconductor layers include different transistor pairs of the plurality of transistor pairs. Each of the plurality of transistor pairs includes first and second transistors with first, second, and third source/drain terminals. The first transistor includes the first and the third source/drain terminals, and the second transistor includes the second and the third source/drain terminals. The first source/drain terminal is electrically coupled to an erase voltage line. The second source/drain terminal is electrically coupled to a corresponding one of a plurality of program/read voltage lines. The third source/drain terminal is electrically coupled to a corresponding one of the plurality of bit lines.
Abstract:
A 3D memory structure and a method for manufactured the same are provided. The 3D memory structure comprises a plurality of strings, a plurality of first conductive lines, a plurality of second conductive lines and a plurality of third conductive lines. The strings are disposed in parallel. The first conductive lines are disposed over the strings. Center regions of the first conductive lines are disposed perpendicular to the strings. The second conductive lines are disposed over the first conductive lines. The second conductive lines connect end regions of half of the first conductive lines. The third conductive lines are disposed over the second conductive lines. The third conductive lines connect end regions of the other half of the first conductive lines.
Abstract:
An integrated circuit and an operating method for the same are provided. The integrated circuit comprises a stacked structure and a conductive structure. The stacked structure comprises a conductive strip. The conductive structure is disposed above the stacked structure and electrically connected to the conductive strip. The conductive structure and the conductive strip have various gap distances between corresponding points of different pairs according to a basic axis.
Abstract:
A device includes a substrate with a recess, having a bottom and sides, extending into the substrate from the substrate's upper surface. The sides include first and second sides oriented transversely to one another. A stack of alternating active and insulating layers overlie the substrate's surface and the recess. At least some of the active layers have an upper and lower portions extending along upper and lower planes over and generally parallel to the upper surface and to the bottom, respectively. The active layers have first and second upward extensions positioned along the first and second sides to extend from the lower portions of their respective active layers. Conductive strips adjoin the second upward extensions of the said active layers. The conductive strips can comprise sidewall spacers on the sides of the second upward extensions, the conductive strips connected to overlying conductors by interlayer conductors.
Abstract:
A semiconductor structure and a manufacturing method of the same are provided. The semiconductor structure includes a plurality of stacked structures and a plurality of contact structures. Each of the stacked structures includes a plurality of conductive strips and a plurality of insulating strips, and the conductive strips and the insulating strips are interlaced. Each of the contact structures is electrically connected to each of the stacked structures. The contact structure includes a first conductive pillar, a dielectric material layer, a metal silicide layer, and a second conductive pillar. The dielectric material layer surrounds the lateral surface of the first conductive pillar. The metal silicide layer is formed on an upper surface of the first conductive pillar. The second conductive pillar is formed on the metal silicide layer. The upper surfaces of the first conductive pillars are coplanar.