Abstract:
This invention relates to a polyester/polyamide blend having an excellent gas barrier property. More particularly, the present invention relates to combinations of a polyethylene terephthalate polymer and a polyamide polymer having an excellent gas barrier property and short oxygen scavenging induction periods, where the polyamide polymer has a C:A terminal group concentration ratio of 2:1 or more and a C+A terminal group concentration of at least 0.17 meq/g of polyamide polymer, wherein C represents a cumulative total of a terminal carboxyl group concentration and a terminal hydrocarbyl group concentration expressed in meq/g of polyamide, and A represents a terminal amine group concentration expressed in meq/g of polyamide.
Abstract:
A device and method for ablating tissue is disclosed comprising the steps of acquiring an anatomical image of a patient, correlating the image to the patient, guiding an ablating member within the patient while tracking the position of the ablating member in the patient, positioning the ablating member in a desired position to ablate tissue, emitting ablating energy from the ablating member to form an ablated tissue area and removing the ablating member from the patient.
Abstract:
Disclosed are copolymers derived from copolymerization of from about 50 to about 70 weight % of methyl acrylate; from about 0.5 to about 5 weight % of 1,4-butene-dioic acid moieties, or anhydrides or monoalkyl esters thereof; the remainder being ethylene, wherein the copolymer has a number average molecular weight from about 40,000 to about 65,000 and a melt index from about 1 to about 6 g/10 minutes. Also disclosed are compounded compositions comprising these copolymers, and cured compositions (i.e., vulcanizates) as well as rubber articles formed from these compounded compositions, such as hoses, dampers, boots, seals, and gaskets for automotive and nonautomotive applications. Blends of other polymers with these copolymers are also disclosed.
Abstract:
Disclosed are transparent, multilayered articles having high transparency and low haze and a process for their preparation. The multilayer articles comprise at least one layer which contains at least one polyester comprising 2,2,4,4-tetramethyl-1,3-cyclobutanediol and a separate layer which contains copolyamide or homogeneous blend of polyamides. The polyester component and the polyamide component have refractive indices which differ by about 0.006 to about −0.0006. The small difference in the refractive indices enable the incorporation of regrind into one or more of the layers of the article while maintaining high clarity. These articles can exhibit improved excellent barrier properties and good melt processability while retaining excellent mechanical properties. Metal catalysts can be incorporated into one or more layers to impart oxygen-scavenging properties.
Abstract:
A device and method for ablating tissue is disclosed comprising the steps of acquiring an anatomical image of a patient, correlating the image to the patient, guiding an ablating member within the patient while tracking the position of the ablating member in the patient, positioning the ablating member in a desired position to ablate tissue, emitting ablating energy from the ablating member to form an ablated tissue area and removing the ablating member from the patient.
Abstract:
Disclosed is a process for the preparation of multilayered, shaped articles having high transparency and low haze and in which at least one layer contains at least one polyester comprising 2,2,4,4-tetramethyl-1,3-cyclobutanediol and a separate layer which contains a transamidized, homogeneous blend of a least two polyamides. The polyester component and the polyamide component have refractive indices which differ by about 0.006 to about −0.0006. The small difference in the refractive indices enable the incorporation of regrind into one or more of the layers of the article while maintaining high clarity. These articles can exhibit improved excellent barrier properties and good melt processability while retaining excellent mechanical properties. Metal catalysts can be incorporated into one or more layers to impart oxygen-scavenging properties.
Abstract:
A system and method for creating lesions and assessing their completeness or transmurality. Assessment of transmurality of a lesion is accomplished by monitoring the depolarization signal in a local electrogram taken using electrodes located adjacent the tissue to be ablated. Following onset of application of ablation energy to heart tissue, the local electrogram is measured with electrodes located adjacent tissue to be ablated so that the ablation energy to ablation elements can be selectively reduced or terminated when transmurality is detected.
Abstract:
Some embodiments of the invention provide a system for occluding a left atrial appendage of a patient. Some embodiments of the system can include a ring occluder that can be positioned around the left atrial appendage and a ring applicator to position the ring occluder with respect to the left atrial appendage. One embodiment discloses a method of accessing endocardial surfaces of the heart through the atrial appendage. Additional embodiments of the invention provide a clip occluder that can be positioned around the left atrial appendage. A clip applicator can position the clip occluder with respect to the left atrial appendage.
Abstract:
Apparatus and method for ablating target tissue including a non-linear area of tissue in the left atrium of a patient. The method can include selecting an ablation apparatus having an ablator with a tissue engagement section, penetrating a chest cavity of the patient, and identifying the target tissue. The method can also include positioning the ablation apparatus adjacent to the target tissue so that the tissue engagement section can transfer ablation energy to the target tissue. The method can further include energizing the tissue engagement section with ablation energy in order to create a footprint on the non-linear area of tissue in the left atrium and to reduce an overall mass of excitable tissue in the left atrium.
Abstract:
A method includes providing a plurality of InfiniBand switches (350, 318), wherein the plurality of InfiniBand switches are coupled to form a Clos network (320), providing a plurality of sources coupled to the Clos network, and providing a plurality of destinations coupled to the Clos network. Calculating a plurality of routing trees (330, 332, 334, 336) for the plurality of InfiniBand switches, and calculating a plurality of DLIDs (410) and a set of forwarding instructions (413) for each of the plurality of InfiniBand switches, where each of the plurality of DLIDs corresponds to one of the plurality of routing trees and one of the plurality of destinations. Populating a forwarding table (415) of each of the plurality of InfiniBand switches in the Clos network with the plurality of DLIDs and the set of forwarding instructions.