摘要:
Monitoring of parameters using remote sensors, which are attached directly to the product material, allows for non-intrusive entry into the manufacturing area, via the same robotic handling or automated systems used to transport the standard product material. Data is recorded from the sensors, by wireless transmission, or when a signal is impassible, on-board memory will store the data for later downloading.
摘要:
A method of manufacturing a MOSFET semiconductor device comprises forming a gate electrode over a substrate and a gate oxide between the gate electrode and the substrate; forming source/drain extensions in the substrate; forming first and second sidewall spacers; implanting dopants within the substrate to form source/drain regions in the substrate adjacent to the sidewalls spacers; laser thermal annealing to activate the source/drain regions; depositing a layer of nickel over the source/drain regions; and annealing to form a nickel silicide layer disposed on the source/drain regions. The source/drain extensions and sidewall spacers are adjacent to the gate electrode. The source/drain extensions can have a depth of about 50 to 300 angstroms, and the source/drain regions can have a depth of about 400 to 1000 angstroms. The annealing is at temperatures from about 350 to 500° C.
摘要:
A method is provided for eliminating uneven heating of substrate active areas during laser thermal annealing (LTA) due to variations in gate electrode density. Embodiments include adding dummy structures, formed simultaneously with the gate electrodes, to “fill in” the spaces between isolated gate electrodes, such that the spacing between the gate electrodes and the dummy structures is the same as the spacing between the densest array of device structures on the substrate surface. Since the surface features (i.e., the gate electrodes and the dummy structures) appear substantially uniform to the LTA laser, the laser radiation is uniformly absorbed by the substrate, and the substrate surface is evenly heated.
摘要:
Dopant deactivation, particularly at the Si/silicide interface, is avoided by forming deep source/drain implants after forming silicide layers on the substrate and activating the source/drain regions by laser thermal annealing. Embodiments include forming source/drain extensions, forming metal silicide layers on the substrate surface and gate electrode, forming preamorphized regions under the metal silicide layers in the substrate, ion implanting to form deep source/drain implants overlapping the preamorphized regions and extending deeper into the substrate then the preamorphized regions, and laser thermal annealing to activate the deep source/drain regions.
摘要:
Semiconductor devices with reduced NiSi/Si interface contact resistance are fabricated by forming preamorphized regions in a substrate at a depth overlapping the subsequently formed NiSi/Si interface, ion implanting impurities to form deep source/drain implants overlapping the preamorphized regions deeper in the substrate and laser thermal annealing to activate the deep source/drain regions. Nickel silicide layers are then formed in a main surface of the substrate and on the gate electrode. Embodiments include forming deep source/drain regions with an activated impurity concentration of 1×1020 to 1×1021 atoms/cm3 at the NiSi/Si interface.
摘要:
A strained silicon p-type MOSFET utilizes a strained silicon channel region formed on a silicon germanium substrate. Silicon germanium regions are formed to the silicon germanium layer adjacent to ends of the strained silicon channel region, and shallow source and drain extensions are implanted in the silicon germanium material. The shallow source and drain extensions do not extend into the strained silicon channel region. By forming the source and drain extensions in silicon germanium material rather than in silicon, source and drain extension distortions caused by the enhanced diffusion rate of boron in silicon are avoided.
摘要:
A process for fabricating a semiconductor device having a high-K dielectric layer over a silicon substrate, including steps of growing on the silicon substrate an interfacial layer of a silicon-containing dielectric material; and depositing on the interfacial layer a layer comprising at least one high-K dielectric material, in which the interfacial layer is grown by laser excitation of the silicon substrate in the presence of oxygen, nitrous oxide, nitric oxide, ammonia or a mixture of two or more thereof. In one embodiment, the silicon-containing material is silicon dioxide, silicon nitride, silicon oxynitride or a mixture thereof.
摘要:
A method of manufacturing a MOSFET semiconductor device includes forming a gate electrode over a substrate and a gate oxide between the gate electrode and the substrate, forming source/drain extensions in the substrate, and forming first and second sidewall spacers. Dopants are then implanted within the substrate to form amorphitized source/drain regions in the substrate adjacent to the sidewalls spacers. The amorphitized source/drain regions are partially recrystallized, and laser thermal annealing activates the source/drain regions. The source/drain extensions and sidewall spacers are adjacent to the gate electrode. The source/drain extensions can have a depth of about 50 to 300 angstroms, and the source/drain regions can have a depth of about 400 to 1000 angstroms. Also, the recrystallization reduces the amorphitized source/drain regions by a depth of about 20 to 100 angstroms. A semiconductor device is also disclosed.
摘要:
A method of manufacturing a semiconductor device includes forming a gate electrode over a substrate, introducing dopants into the substrate, forming a tuning layer over at least a portion of the substrate, and activating the dopants using laser thermal annealing. The tuning layer causes an increase or a decrease in the amount of fluence absorbed by the portion of substrate below the tuning layer in comparison to an amount of fluence absorbed by a portion of substrate not covered by the tuning layer. Additional tuning layers can also be formed over the substrate.