摘要:
A compound semiconductor device having a channel layer which is made of periodically laminated structure of thin-film layers of compound semiconductor substantially being different from each other. The difference of energy between the conduction band and the valence band of compound semiconductor thin-film layers of one side is less than that of the other side thin-film layers, moreover the electron mobility in low electric field application in the thin-film layers of compound semiconductor of one side is greater than that of the other side thin-film layers, besides the electron mobility in high electric field application in the thin-film layers of compound semiconductor of one side is less than that of the other side thin-film layers, and/or the impact ionization of valence electron generated in high electric field application takes place earlier than the thin-film layers of compound semiconductor of the other side. While conduction electron preferentially flows through the thin-film layers of compound semiconductor of one side in low electric field application, and conversely, while conduction electron having substantial energy intensified by acceleration preferentially flows through other side thin-film layers in high electric field application.
摘要:
A memory cell capacitor (C3) of a DRAM is formed by use of a MIM capacitor which uses as its electrode a metal wiring line of the same layer (M3) as metal wiring lines within a logic circuit (LOGIC), thereby enabling reduction of process costs. Higher integration is achievable by forming the capacitor using a high dielectric constant material and disposing it above a wiring layer in which bit lines (BL) are formed. In addition, using 2T cells makes it possible to provide a sufficient signal amount even when letting them operate with a low voltage. By commonizing the processes for fabricating capacitors in analog (ANALOG) and memory (MEM), it is possible to realize a semiconductor integrated circuit with the logic, analog and memory mounted together on one chip at low costs.
摘要:
A memory cell capacitor (C3) of a DRAM is formed by use of a MIM capacitor which uses as its electrode a metal wiring line of the same layer (M3) as metal wiring lines within a logic circuit (LOGIC), thereby enabling reduction of process costs. Higher integration is achievable by forming the capacitor using a high dielectric constant material and disposing it above a wiring layer in which bit lines (BL) are formed. In addition, using 2T cells makes it possible to provide a sufficient signal amount even when letting them operate with a low voltage. By commonizing the processes for fabricating capacitors in analog (ANALOG) and memory (MEM), it is possible to realize a semiconductor integrated circuit with the logic, analog and memory mounted together on one chip at low costs.
摘要:
A memory cell capacitor (C3) of a DRAM is formed by use of a MIM capacitor which uses as its electrode a metal wiring line of the same layer (M3) as metal wiring lines within a logic circuit (LOGIC), thereby enabling reduction of process costs. Higher integration is achievable by forming the capacitor using a high dielectric constant material and disposing it above a wiring layer in which bit lines (BL) are formed. In addition, using 2T cells makes it possible to provide a sufficient signal amount even when letting them operate with a low voltage. By commonizing the processes for fabricating capacitors in analog (ANALOG) and memory (MEM), it is possible to realize a semiconductor integrated circuit with the logic, analog and memory mounted together on one chip at low costs.
摘要:
The present invention relates to a structure of a capacitor, in particular using niobium pentoxide, of a semiconductor capacitor memory device. Since niobium pentoxide has a low crystallization temperature of 600° C. or less, niobium pentoxide can suppress the oxidation of a bottom electrode and a barrier metal by heat treatment. However, according to heat treatment at low temperature, carbon incorporated from CVD sources into the film is not easily oxidized or removed. Therefore, a problem that leakage current increases arises. As an insulator film of a capacitor, a layered film composed of niobium pentoxide film and a tantalum pentoxide film, or a layered film composed of niobium pentoxide films is used. By the use of the niobium pentoxide film, the dielectric constant of the capacitor can be made high and the crystallization temperature can be made low. By multiple-stage formation of the dielectric film, leakage current can be decreased.
摘要:
A capacitance of a capacitor including a metal electrode is increased by using a dielectric film having a high dielectric constant. A band gap is reduced as the dielectric constant of a material is increased. In a dielectric having the dielectric constant of 50 or more such as strontium titanate, the high dielectric constant is ensured due to the crystallization but the side effect of the increased leakage current occurs. Since the replacement of the material requires the significant change of the manufacturing apparatus or the manufacturing process, the manufacturing cost is increased.Hafnium oxide is not replaced with the other materials, but the dielectric constant of hafnium oxide is improved to increase the capacitance. An element having a large ion radius such as yttrium is added in a small amount to increase the dielectric constant of hafnium while an amorphous state is maintained. The capacitor process where the amorphous state is maintained is applied to produce the DRAM at low cost.
摘要:
A capacitor uses niobium pentoxide in the manufacture of a semiconductor device. The niobium pentoxide has a low crystallization temperature of 600° C. that provides control over the oxidation of the bottom electrode during heat-treatment. A dielectric constituent present as an amorphous oxide along the grain boundaries of polycrystalline niobium pentoxide is used for a capacitor insulator., thereby providing a method to decrease the leakage current along the grain boundary of niobium pentoxide and to realize a high dielectric constant and low-temperature crystallization.
摘要:
A disadvantage upon heat treatment in an oxygen atmosphere of a dielectric film formed on a lower electrode of capacitance device of DRAM that oxygen permeating the lower electrode oxidizes a barrier layer to form an oxide layer of high resistance and low dielectric constant is prevented. An Ru silicide layer is formed on the surface of a plug in a through hole formed below a lower electrode for an information storage capacitance device C and an Ru silicon nitride layer is formed further on the surface of the Ru silicide layer. Upon high temperature heat treatment in an oxygen atmosphere conducted in the step of forming a dielectric film on the lower electrode, the Ru silicon nitride layer is oxidized sacrificially into an Ru silicon oxynitride to prevent progress of oxidation in the Ru silicide layer.
摘要:
A schottky diode manufacturing process employing diamond film comprises forming a B-doped p-type polycrystalline diamond film on a low-resistance p-type Si substrate by CVD using a source gas consisting of CH.sub.4, H.sub.2 and B.sub.2 H.sub.6, forming an ohmic contact on the back of the p-type Si substrate, and forming a metal electrode of Al, Pt Au, Ti or W on the B-doped p-type polycrystalline diamond film. The B/C concentration ratio of the source gas is greater than 0.01 ppm and less than 20 ppm.