摘要:
In order to fabricate a semiconductor memory, a trench capacitor is arranged in a first trench. Beside the first trench, a first longitudinal trench and, parallel on the other side of the first trench, a second longitudinal trench are arranged in the substrate. A first spacer word line is arranged in the first longitudinal trench and a second spacer word line is arranged in the second longitudinal trench. There are arranged in the first trench connecting webs between the first spacer word line and the second spacer word line which have a thickness which, in the direction of the first spacer word line, is less than half the width of the first trench in the direction of the first spacer word line.
摘要:
The present invention provides a method for fabricating a capacitive element (100), a substrate (101) being provided as a first electrode layer of the capacitive element (100), the substrate (101) provided as an electrode layer is conditioned, a dielectric layer (102) is deposited on the conditioned substrate (101) and a second electrode layer (104) is applied on the layer stack produced, the layer stack being modified by a heat treatment in such a way that the dielectric layer (102) deposited on the conditioned substrate (101) forms a dielectric mixed layer (105) with a reaction layer (103) deposited on the dielectric layer (102), which dielectric mixed layer has an increased dielectric constant (k) or an increased thermal stability.
摘要:
The present invention relates to a stacked capacitor array and a fabrication method for a stacked capacitor array having a multiplicity of stacked capacitors, an insulator keeping at least two adjacent stacked capacitors mutually spaced apart, so that no electrical contact can arise between them and the stacked capacitors are mechanically stabilized.
摘要:
A method for fabricating a trench capacitor in a semiconductor substrate with a low-impedance inner electrode for use in memory cells of memory devices. A separating layer is provided on a dielectric layer in the active region of the trench capacitor. Afterward, a low-impedance inner electrode made of metal or a metal compound is introduced both in the active region and in the collar region lined with an insulation layer.
摘要:
The present invention provides a method for fabricating a trench capacitor having an insulation collar (10; 10a, 10b) in a substrate (1), which is electrically connected to the substrate (1) on one side via a buried contact (15a, 15b), in particular for a semiconductor memory cell having a planar select transistor which is provided in the substrate (1) and is connected via the buried contact (15a, 15b), comprising the steps of: providing a trench (5) in the substrate (1) using a hard mask (2, 3) with a corresponding mask opening; providing a capacitor dielectric (30) in the lower and middle regions of the trench, the insulation collar (10) in the middle and upper regions of the trench and an electrically conductive filling (20) at least up to the top side of the insulation collar (10); completely filling the trench (5) with a filling material (50; 50′; 50″; 20); carrying out an STI trench production process; removing the filling material (50; 50′; 50″; 20) and lowering the electrically conductive filling (20) to below the top side of the insulation collar (10); forming an insulation region (IS; IS1, IS2) on one side with respect to the substrate (1) above the insulation collar (10); uncovering a connection region (KS; KS1, KS2) on the other side with respect to the substrate (1) above the insulation collar (10); and forming the buried contact (15a, 15b) by depositing and etching back a C filling (70; 70′; 70″; 70′″).
摘要:
At least a partial layer of an upper capacitor electrode is formed by metal carbide, preferably by a transition metal carbide. In one embodiment, the metal carbide layer is formed by depositing an alternating sequence of metal-containing layers and carbon-containing layers on top of one another and then subjecting them to a heat treatment, in such a manner that they mix with one another. The patterning of the layer sequence can be carried out before the carbide formation step.
摘要:
Method of providing trench walls of a uniform orientation to support epitaxial growth in the trench. The trench is formed by a first etching process. A second etching process is used to change crystal orientation and thus create a widened trench with modified trench walls having a predetermined crystal orientation
摘要:
The invention relates to a method for operating a switching or amplifier device (11, 111), and to a switching or amplifier device (11, 111) comprising: an active material (13, 113) adapted to be placed in a more or less conductive state by means of appropriate switching processes; and at least three electrodes or contacts (12a, 12b, 12c).
摘要:
A semiconductor memory cell includes a field effect transistor coupled to a storage capacitor that formed as a multilayer stack over the surface of the silicon chip of the cell. The capacitor is formed by three conformal layers over the surface of a cup-shaped contact hole in a silicon oxide layer overlying the surface of the chip.
摘要:
A method for forming a plurality of electrically conductive wires on a substrate. The method includes forming a relatively non-planar metal layer over a surface of the substrate. A self-planarizing material is deposited over the metal layer. The self-planarizing material forms a planarization layer over the surface of the metal layer. The planarization layer has a surface relatively planar compared to the relatively non-planar metal layer. A photoresist layer is deposited over the surface of the planarization layer. The photoresist layer is patterned with a plurality of grooves to form a mask with such grooves exposing underling portions of the planarization layer. The photoresist mask is used as a mask to etch grooves in the exposed portions of the planarization layer and thereby form a second mask. The second mask exposes underling portions of the relatively non-planar metal layer. The second mask is used to etch grooves in the relatively non-planar conductive metal layer and thereby form the plurality of electrically conductive wires in the metal layer. The wires are separated from each other by the grooves formed in the relatively non-planar metal layer. The planarization layer is formed by a spinning-on an organic polymer, for example an organic polymer having silicon, or a flowable oxide, or a hydrogensilsequioxane, or divinyl-siloxane-benzocyclobutene. The metal layer is etched using reactive ion etching. The planarization layer is removed using a wet chemical etch.