Abstract:
A method for fabricating semiconductor device includes the steps of: forming a first magnetic tunneling junction (MTJ) on a substrate; forming a first liner on the MTJ; forming a second liner on the first liner; forming an inter-metal dielectric (IMD) layer on the MTJ, and forming a metal interconnection in the IMD layer, the second liner, and the first liner to electrically connect the MTJ. Preferably, the first liner and the second liner are made of different materials.
Abstract:
A method for fabricating semiconductor device includes the steps of: forming a first magnetic tunneling junction (MTJ) on a substrate; forming a first liner on the MTJ; forming a second liner on the first liner; forming an inter-metal dielectric (IMD) layer on the MTJ, and forming a metal interconnection in the IMD layer, the second liner, and the first liner to electrically connect the MTJ. Preferably, the first liner and the second liner are made of different materials.
Abstract:
A magnetoresistive random access memory (MRAM), including a bottom electrode layer on a substrate, a magnetic tunnel junction stack on the bottom electrode layer, and a top electrode layer on the magnetic tunnel junction stack, wherein the material of top electrode layer is titanium nitride, and the percentage of nitrogen in the titanium nitride gradually decreases from the top surface of top electrode layer to the bottom surface of top electrode layer.
Abstract:
A magnetoresistive random access memory (MRAM), including multiple cell array regions, multiple MRAM cells disposed in the cell array region, a silicon nitride liner conformally covering on the MRAM cells, an atomic layer deposition dielectric layer covering on the silicon nitride liner in the cell array region, wherein the surface of atomic layer deposition dielectric layer is a curved surface concave downward to the silicon nitride liner at the boundary of MRAM cells, and an ultra low-k dielectric layer covering on the atomic layer deposition dielectric layer.
Abstract:
A method for fabricating semiconductor device includes the steps of: providing a substrate; forming a first gate structure on the substrate, a first spacer around the first gate structure, and an interlayer dielectric (ILD) layer around the first spacer; performing a first etching process to remove part of the ILD layer for forming a recess; performing a second etching process to remove part of the first spacer for expanding the recess; and forming a contact plug in the recess.
Abstract:
A manufacturing method of a semiconductor structure includes the following steps. An epitaxial region is formed in a semiconductor substrate. A dielectric layer is formed on the epitaxial region, and a contact hole is formed in the dielectric layer. The contact hole exposes a part of the epitaxial region, and an oxide-containing layer is formed on the epitaxial region exposed by the contact hole. A contact structure is formed in the contact hole and on the oxide-containing layer. The oxide-containing layer is located between the contact structure and the epitaxial region. A semiconductor structure includes the semiconductor substrate, at least one epitaxial region, the contact structure, the oxide-containing layer, and a silicide layer. The contact structure is disposed on the epitaxial region. The oxide-containing layer is disposed between the epitaxial region and the contact structure. The silicide layer is disposed between the oxide-containing layer and the contact structure.
Abstract:
A method for fabricating semiconductor device is disclosed. First, a substrate is provided, a first gate structure is formed on the substrate, a first spacer is formed around the first gate structure, and an interlayer dielectric (ILD) layer is formed around the first spacer. Next, a first etching process is performed to remove part of the ILD layer for forming a recess, a second etching process is performed to remove part of the first spacer for expanding the recess, and a contact plug is formed in the recess.
Abstract:
A method for manufacturing semiconductor devices having metal gate includes follow steps. A substrate including a plurality of isolation structures is provided. A first nFET device and a second nFET device are formed on the substrate. The first nFET device includes a first gate trench and the second nFET includes a second gate trench. A third bottom barrier layer is formed in the first gate trench and a third p-work function metal layer is formed in the second gate trench, simultaneously. The third bottom barrier layer and the third p-work function metal layer include a same material. An n-work function metal layer is formed in the first gate trench and the second gate trench. The n-work function metal layer in the first gate trench directly contacts the third bottom barrier layer, and the n-work function metal layer in the second gate trench directly contacts the third p-work function metal layer.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of : providing a substrate; forming a first gate structure on the substrate; forming a first contact plug adjacent to the first gate structure; and performing a replacement metal gate (RMG) process to transform the first gate structure into metal gate.
Abstract:
A method for manufacturing semiconductor devices having metal gate includes follow steps. A substrate including a plurality of isolation structures is provided. A first nFET device and a second nFET device are formed on the substrate. The first nFET device includes a first gate trench and the second nFET includes a second gate trench. A third bottom barrier layer is formed in the first gate trench and a third p-work function metal layer is formed in the second gate trench, simultaneously. The third bottom barrier layer and the third p-work function metal layer include a same material. An n-work function metal layer is formed in the first gate trench and the second gate trench. The n-work function metal layer in the first gate trench directly contacts the third bottom barrier layer, and the n-work function metal layer in the second gate trench directly contacts the third p-work function metal layer.