Abstract:
A device and method are provided for detecting analyte with correction for the effects of humidity. The device comprises a resonant sensor having an oscillating portion. A capacitor is positioned on the oscillating portion. The capacitor is formed by at least two electrodes and a sensing material positioned between the electrodes. A readout circuit is arranged to measure a response of the oscillating portion (e.g., frequency shift or change in resonance frequency, stiffness or strain) and a capacitance of the capacitor when substances are adsorbed or absorbed in the sensing material. This combination of measurements enables the device to distinguish between various types of adsorbed or absorbed molecules, especially distinguishing between an analyte of interest and water molecules that might interfere with the detection of the analyte. A processor determines an analyte value indicative of the presence, amount or concentration of the analyte in dependence upon measurements of both the response of the oscillating portion and the capacitance to account for the effects of water in the sensing material.
Abstract:
According to one embodiment, a strain sensing element provided on a deformable substrate includes: a first magnetic layer; a second magnetic layer; a spacer layer; and a bias layer. Magnetization of the second magnetic layer changes according to deformation of the substrate. The spacer layer is provided between the first magnetic layer and the second magnetic layer. The second magnetic layer is provided between the spacer layer and the bias layer. The bias layer is configured to apply a bias to the second magnetic layer.
Abstract:
The present invention provides methods utilizing current nano-technological processes for fabricating a range of micro-devices with significantly expanded capabilities, unique functionalities at microscopic levels, enhanced degree of flexibilities, reduced costs and improved performance in the fields of bioscience and medicine. Such fabricated micro-devices have significant improvements in many areas over the existing, conventional methods, which include, but are not limited to reduced overall costs, early disease detection, targeted drug delivery, targeted disease treatment and reduced degree of invasiveness in treatment. Compared with existing, conventional approaches, the said inventive approach disclosed in this patent application is much more microscopic, sensitive, accurate, precise, flexible and effective.
Abstract:
The present invention relates to a method for functionalizing fluid lines (1b) in a micromechanical device, the walls of which include an opaque layer. For this purpose, the invention provides a method for functionalizing a micromechanical device provided with a fluid line including a peripheral wall (5) having a surface (2) outside the line and an inner surface (3) defining a space (1b) in which a fluid can circulate, the peripheral wall at least partially including a silicon layer (5a). The method includes the following steps: a) providing a device, the peripheral wall (5) of which at least partially includes a silicon layer (5a) having, at least locally, a thickness (e) of more than 100 nm and less than 200 nm, advantageously of 160 to 180 nm; c) silanizing at least the inner surface of the fluid line; d) the localized, selective photo-deprotection on at least the inner surface of the silanized device by exposing the peripheral wall (5) at the point at which said wall has a thickness (e) of more than 100 nm and less than 200 nm, advantageously of 160 to 180 nm.
Abstract:
A method for the manufacture of articles of thiol-ene polymers comprises the steps: a) reacting a compound comprising at least two thiol groups and a compound comprising at least two carbon-carbon double bonds, in off stochiometry ratios to obtain a first intermediate article, wherein said first intermediate article comprises at least one unreacted group selected from an unreacted thiol group and an unreacted carbon-carbon double bond, and b) contacting said first intermediate article with a second article, wherein the surface of said second article at least partially comprises reactive groups and reacting at least a part of said unreacted groups on said first intermediate article with chemical groups on said second article to obtain covalent bonds and forming a final article.
Abstract:
A method for the manufacture of articles of thiol-ene polymers comprises the steps: a) reacting a compound comprising at least two thiol groups and a compound comprising at least two carbon-carbon double bonds, in off stochiometry ratios to obtain a first intermediate article, wherein said first intermediate article comprises at least one unreacted group selected from an unreacted thiol group and an unreacted carbon-carbon double bond, and b) contacting said first intermediate article with a second article, wherein the surface of said second article at least partially comprises reactive groups and reacting at least a part of said unreacted groups on said first intermediate article with chemical groups on said second article to obtain covalent bonds and forming a final article.
Abstract:
An apparatus includes a substrate having a top surface, a substantially regular array of raised structures located over the top surface, and a layer located on the top surface between the structures. Distal surfaces of the structures are farther from the top surface than remaining portions of the structures. The layer is able to contract such that the distal surfaces of the structures protrude through the layer. The layer is able to swell such that the distal surfaces of the structures are closer to the top surface of the substrate than one surface of the layer.
Abstract:
A sub-centimeter structure includes a first structural component, a second structural component arranged proximate the first structural component, and a joint connecting the first and second structural components. The joint includes a material that has a first phase that is substantially rigid to hold the first and second structural components in a substantially rigid configuration while the material is in the first phase. The material of the joint has a second phase such that the joint is at least partially fluid to allow the first and second structural components to move relative to each other while the material is in the second phase. The joint interacts with the first and second structural components while the material is in the second phase to cause the first and second structural components to move relative to each other. And, the first and second structural components include a polymer.
Abstract:
A method for the production of a structured metal layer (7) made from an alloy composed of titanium and nickel includes the following process steps: a sacrificial layer composite (3) is provided, which comprises a second sacrificial layer (2) applied onto a first sacrificial layer (1), the first sacrificial layer (1) is subjected for the purpose of structuring to a wet-chemical etching process in such a manner that undercutting of the sacrificial layer (1) occurs, a metal layer (7) of the alloy is applied indirectly or directly to the structured sacrificial layer composite (3). The first sacrificial layer (1) is at a greater distance from the metal layer (7). The second sacrificial layer (2) facing the metal layer (7) to be deposited is subjected to a dry etching process prior to wet-chemical etching of the first sacrificial layer (1) so that the second sacrificial layer (2) is provided with a structure that corresponds to the desired structure of the metal layer (7). The invention further relates to an object, particularly a stent or an implant, which comprises at least one metal layer (7) that is produced by applying the method for the production of the structured metal layer (7).
Abstract:
An apparatus includes a substrate having a top surface, a substantially regular array of raised structures located over the top surface, and a layer located on the top surface between the structures. Distal surfaces of the structures are farther from the top surface than remaining portions of the structures. The layer is able to contract such that the distal surfaces of the structures protrude through the layer. The layer is able to swell such that the distal surfaces of the structures are closer to the top surface of the substrate than one surface of the layer.