Abstract:
A solid lubricant and composition useful for lubricating the flanges of locomotive wheels, railcar wheels, rail tracks and in applications where it is desirable to reduce friction when metal contacts metal. The solid lubricant having from about 25% to about 70% by volume of a biopolymer polymeric carrier, about 5% to 75% percent by volume of organic and inorganic extreme pressure additives, about 0% to 20% by volume synthetic extreme pressure anti-wear liquid oil, and about 0% to 1% by volume optical brightener.
Abstract:
A coating is provided having a first metal or non-metal nitride layer and a second metal or non-metal nitride layer wherein the first and second nitride layers are sufficiently resistant to interdiffusion to maintain respective individual layer structure and strength at an elevated operating temperature when a coating contact surface is in sliding contact with another material and wherein one of the first layer or second layer includes a component that is oxidizable at the contact surface to form a friction-reducing lubricous oxide material at the contact surface.
Abstract:
Pressureless sintered high density materials containing hexagonal boron nitride have low coefficients of friction and high wear resistance and are useful for bearings, bushings and other articles subjected to bearing loads.
Abstract:
The present invention provides compositions and products, such as waxes and lubricants, comprising a plurality of nanoparticles dispersed in a continuous phase comprising a vegetable oil derived material, such as one or more vegetable oils or a synthetic product derived from one or more vegetable oils. Incorporation of nanoparticles in the present compositions is beneficial for providing mechanical, thermal and/or chemical properties useful for a selected product or product application. In some compositions of the present invention, for example, incorporation of the nanoparticle component provides compositions derived from one or more vegetable oils exhibiting enhanced mechanical stability, hardness, viscosity, thermal stability and mechanical strength.
Abstract:
A method of making a lubricant is disclosed. The method includes providing a hard nanosphere having a size of less than about 500 nanometers. The method also includes exposing the nanosphere to a radiation energy to at least partially bond a functional agent to a surface of the nanosphere.
Abstract:
A threaded joint for steel pipes comprised of a pin 1 and a box 2 each having a threaded portion (1a, 2a) and an unthreaded metal contact portion (1b, 2b) exhibits adequate leakage resistance and galling resistance when used for makeup of oil country tubular goods with application of a green dope or even without any dope. The threaded joint has a first plating layer of Sn—Bi alloy plating or Sn—Bi—Cu alloy plating formed on the contact surface of at least one of the pin 1 and the box 2. The first plating layer may have a second plating layer selected from Sn plating, Cu plating, and Ni plating on its lower side and at least one layer of a lubricating coating, and particularly a solid lubricating coating, on its upper side.
Abstract:
The elevated temperature forming of magnesium based alloy workpieces by stretching, drawing, bending (or the like) a surface of the heated workpiece over the forming surface of a forming tool is improved by forming an integral adherent layer of magnesium hydroxide on the tool-contacted surface(s) of the magnesium alloy workpiece. The magnesium hydroxide layer may be formed by treating the surface(s) of the sheet with an aqueous salt solution (e.g., sodium chloride) at a temperature and for a time to form a protective layer of desired thickness (e.g., up to about thirty micrometers). If desired, an additional layer of forming lubricant, such as a film comprising boron nitride, may be applied to the magnesium hydroxide layer.
Abstract:
A method of making a thermal spray powder is provided. The method comprises: providing a powder comprising a plurality of porous particles; infiltrating a mixture comprising a solvent and a plurality of solid lubricant particles into the porous particles; and heating the powder to a temperature sufficient to evaporate the solvent. The method of forming a wear-resistant coating is provided. The method comprises: providing a thermal spray powder; heating the thermal spray powder; and accelerating the thermal spray powder from a thermal spray gun onto the substrate, to form a deposit. Yet another embodiment provides a wear resistant coating. The wear resistant coating is formed by thermally spraying the thermal spray powder.
Abstract:
Systems, compositions, methods, etc., that provide significantly enhanced tribological properties to a target substrate such as metal, plastic, wood, glass, etc., by bombarding or showering the target material with bombardment particles substantially saturated with a desirable lubricant composition, typically comprising at least one primary lubricant such as a molybdenum disulphide (MoS2) and at least one polymeric lubricant, such as polytetrafluoroethylene (PTFE), such that the lubricant composition imbeds into the surface of the target material (also called a target substrate).
Abstract translation:系统,组合物,方法等通过用理想的润滑剂组合物基本上饱和的轰击颗粒轰击或淋浴目标材料,为目标基材(例如金属,塑料,木材,玻璃等)提供显着增强的摩擦学性能, 通常包括至少一种主要润滑剂,例如二硫化钼(MoS 2 H 2)和至少一种聚合物润滑剂,例如聚四氟乙烯(PTFE),使得润滑剂组合物嵌入目标材料的表面 (也称为靶基板)。
Abstract:
A sliding bearing having excellent initial conformability and seizure resistance as well as high durability and heat resistance is provided. A sliding bearing comprising a coating layer containing a resin and a solid lubricant formed on a bearing alloy layer, characterized in that the resin of said coating layer is a resin having a glass transition temperature of from 150° C. to 250° C. which has a great elongation at high temperatures.