Abstract:
The present invention provides a molecular device including a source region and a drain region, a molecular medium extending there between, and an electrically insulating layer between the source region, the drain region and the molecular medium. The molecular medium in the molecular device of present invention is a thin film having alternating monolayers of a metal—metal bonded complex monolayer and an organic monolayer.
Abstract:
The present invention provides a molecular device including a source region and a drain region, a molecular medium extending there between, and an electrically insulating layer between the source region, the drain region and the molecular medium. The molecular medium in the molecular device of present invention is a thin film having alternating monolayers of a metal-metal bonded complex monolayer and an organic monolayer.
Abstract:
A molecular computer is formed by establishing arrays of spaced-apart input and output pins on opposing sides of a containment, injecting moleware in solution into the containment and then allowing the moleware to bridge the input and output pins. Moleware includes molecular alligator clip-bearing 2-, 3-, and molecular 4-, or multi-terminal wires, carbon nanotube wires, molecular resonant tunneling diodes, molecular switches, molecular controllers that can be modulated via external electrical or magnetic fields, massive interconnect stations based on single nanometer-sized particles, and dynamic and static random access memory (DRAM and SRAM) components composed of molecular controller/nanoparticle or fullerene hybrids. The current-voltage characteristics that result from the bridging between input and output arrays can be ascertained using another computer to identify the bundles of inputs and corresponding outputs that provide a truth table for the specific functions of the computer.
Abstract:
Neural net with spatially distributed functionalities. An information processing system comprises a neural net with fully distributed neuron and synapse functionalities in a spatially inhomogeneous medium to propagate a response field from an input to an output. The response field is a reaction of the medium to a plurality of input signals and depends non-linearly on the input signals. The response field is also determined by the inhomogeneities. The value of the field at one or more particular locations is indicative of one or more output signals of the neural net.
Abstract:
Methods and compositions for electroless metallization. In one aspect, the invention is characterized by the use of chemical groups capable of ligating with an electroless metallization catalyst, including use of ligating groups that are chemically bound to the substrate. In a preferred aspect, the invention provides a means for selective metallization without the use of a conventional photoresist patterning sequence, enabling fabrication of high resolution metal patterns in a direct and convenient manner.
Abstract:
Observable changes in the electrical and optical characteristics of individual molecules adsorbed on a conductor or semi-conductor caused by the electrical and/or optical excitation or de-excitation of electrons within such molecules can be used as signals which in turn can be used to carry information and such observable information carrying changes or signals can be switched, amplified, and modulated by varying the optical as well as the electrical inputs to such molecules. In the invention electro-optical molecules are adsorbed on a substrate. The natural characteristic of such a molecule is altered by ionization or electron transfer; more specifically an electron is excited to an excited state. Electron transfer, trapping, or excitation/state change, or molecule ionization is effected and controlled as a function of (1) electric potential across an adsorbed molecule or a layer or layers of such molecules and/or (2) wavelength(s)/frequency(ies) and intensity(ies) of the incident illumination thereof. Such electron transfer, trapping, or state change causes a change in the natural or non-perturbed optical response of the adsorbed molecule. The optical response can be detected using Raman spectroscopy, preferably surface enhanced Raman spectroscopy. Such detection or analysis provides a spatial distribution of the Raman lines, each having a particular intensity or magnitude level, thus providing multioutput and multilevel operation of the device. Analysis of the frequency or spatial distribution as well as the intensity of such output signal(s) or information identifies where such electron is trapped or transferred in the adsorbed molecule. Operation is at high speed, e.g. on the order of 10.sup.-13 to 10.sup.-15 second, and is functional at conventional room ambient temperatures.