Abstract:
A method of manufacturing a display device that includes: performing a surface treatment on at least one of two opposing surfaces of a carrier substrate and a mother substrate; bonding the carrier substrate and the mother substrate; performing a thin film formation process on the mother substrate; and separating the carrier substrate and the mother substrate. The thin film formation process includes a heat treatment operation, the surface treatment includes using an inorganic acid or an organic acid, and the surface treatment controls a content of —OH, —OH2+, and —O− groups of the at least one treated surface.
Abstract:
A patterned layer over a wafer is produced by depositing a print-patterned mask structure. Energized particles of a target material are deposited over the wafer and the print-patterned mask such that particles of said target material incident on the mask structure enter the mask structure body and minimally accumulate, if at all, on the surface of the mask structure, and otherwise the particles of target material accumulate as a generally uniform layer over the wafer. The print-patterned mask structure, including particles of target material therein, is removed leaving the generally uniform layer of target material as a patterned layer over the wafer.
Abstract:
A manufacturing process technology creates a pattern on a first layer using a focused ion beam process. The pattern is transferred to a second layer, which may act as a traditional etch stop layer. The pattern can be formed on the second layer without irradiation by light through a reticle and without wet chemical developing, thereby enabling conformal coverage and very fine critical feature control. Both dark field patterns and light field patterns are disclosed, which may enable reduced or minimal exposure by the focused ion beam.
Abstract:
A method of making a device includes forming a first photoresist layer over an underlying layer, patterning the first photoresist layer to form a first photoresist pattern comprising a first grid, rendering the first photoresist pattern insoluble to a solvent, forming a second photoresist layer over the first photoresist pattern, patterning the second photoresist layer to form a second photoresist pattern over the underlying layer, where the second photoresist pattern is a second grid which overlaps the first grid to form a photoresist web, and etching the underlying layer using the photoresist web as a mask.
Abstract:
The present invention provides methods for fabricating devices with low resistance structures involving a lift-off process. A radiation blocking layer is introduced between two resist layers in order to prevent intermixing of the photoresists. Cavities suitable for the formation of low resistance T-gates or L-gates can be obtained by a first exposure, developing, selective etching of blocking layer and a second exposure and developing. In another embodiment, a low resistance gate structure with pillars to enhance mechanical stability or strength is provided.
Abstract:
A method for patterning a semiconductor device can include forming a conductive layer over a semiconductor substrate; alternatively forming positive photoresists and negative photoresists over the conductive layer, forming a plurality of first conductive lines by selectively removing a portion of the conductive layer using the positive photoresist and the negative photoresist as masks; forming an oxide film over the semiconductor substrate including the first conductive lines and the conductive layer; performing a planarization process over the oxide film using the uppermost surface of the first conductive line as a target; removing the plurality of first conductive lines using the oxide film as a mask; forming a plurality if trenches in the semiconductor substrate and removing a portion of the oxide film to expose the uppermost surface of the conductive layer; and then forming a plurality of second conductive lines by removing the exposed conductive layer using the oxide film as a mask.
Abstract:
A method of fabricating a T-gate is provided. The method includes the steps of: forming a photoresist layer on a substrate; patterning the photoresist layer formed on the substrate and forming a first opening; forming a first insulating layer on the photoresist layer and the substrate; removing the first insulating layer and forming a second opening to expose the substrate; forming a second insulating layer on the first insulating layer; removing the second insulating layer and forming a third opening to expose the substrate; forming a metal layer on the second insulating layer on which the photoresist layer and the third opening are formed; and removing the metal layer formed on the photoresist layer. Accordingly, a uniform and elaborate opening defining the length of a gate may be formed by deposition of the insulating layer and a blanket dry etching process, and thus a more elaborate micro T-gate electrode may be fabricated.
Abstract:
A method for manufacturing a compound semiconductor device includes forming a first compound semiconductor layer over a first substrate, the first compound semiconductor layer containing AlxGa1-xN (0≦x
Abstract translation:一种化合物半导体器件的制造方法,包括在第一衬底上形成第一化合物半导体层,所述第一化合物半导体层含有具有第一带隙的Al x Ga 1-x N(0< n 1; x 1) 在所述第一化合物半导体层上形成第二化合物半导体层,所述第二化合物半导体层包含具有大于所述第一带隙的第二带隙的Al y In z Ga 1-y-z N(0
Abstract:
In order to suppress peeling of a film formed on a base, and improve the durability and reliability of the film, an overhang is provided on a side surface of a sacrifice layer, whereby a film is formed, which has an edge portion having a thickness distribution, in which a thickness is gradually decreased to substantially zero at an edge of a formed film.
Abstract:
A method for patterning a semiconductor device can include forming a conductive layer over a semiconductor substrate; alternatively forming positive photoresists and negative photoresists over the conductive layer; forming a plurality of first conductive lines by selectively removing a portion of the conductive layer using the positive photoresist and the negative photoresist as masks; forming an oxide film over the semiconductor substrate including the first conductive lines and the conductive layer; performing a planarization process over the oxide film using the uppermost surface of the first conductive line as a target; removing the plurality of first conductive lines using the oxide film as a mask; forming a plurality if trenches in the semiconductor substrate and removing a portion of the oxide film to expose the uppermost surface of the conductive layer; and then forming a plurality of second conductive lines by removing the exposed conductive layer using the oxide film as a mask.