Abstract:
Method and devices are disclosed for device manufacture of gallium nitride devices by growing a gallium nitride layer on a silicon substrate using Atomic Layer Deposition (ALD) followed by rapid thermal annealing. Gallium nitride is grown directly on silicon or on a barrier layer of aluminum nitride grown on the silicon substrate. One or both layers are thermally processed by rapid thermal annealing. Preferably the ALD process use a reaction temperature below 550° C. and preferable below 350° C. The rapid thermal annealing step raises the temperature of the coating surface to a temperature ranging from 550 to 1500° C. for less than 12 msec.
Abstract:
There are provided high power laser systems for performing decommissioning of structures in land based boreholes, and wells, offshore, and other remote and hazardous locations, and using those system to perform decommissioning operations. In particular embodiments the laser system is a Class I system and reduces emission of materials created during laser cutting operations. The laser systems can include lifting and removal equipment for removing laser sectioned material.
Abstract:
Systems and methods are provided for laser heating in a fluid environment (30). Such a system may include a laser generator (12) and a laser output sub (16) separate from one another via an optical fiber (18). The laser generator may generate a heating laser pulse over the optical fiber. The laser output sub may emit the heating laser pulse to heat a substrate (22) in the fluid environment (30). To enable the heating laser pulse to pass between the laser output sub (16) and the substrate (22), the laser output sub may dispense a laser-transmissive optical grease or a laser-transmissive magnetic fluid, or may generate a vacuum cavitation bubble in the fluid between the laser output sub (16) and the substrate (22).
Abstract:
The present invention generally provides semiconductor substrates having submicronsized surface features generated by irradiating the surface with ultra short laser pulses. In one aspect, a method of processing a semiconductor substrate is disclosed that includes placing at least a portion of a surface of the substrate in contact with a fluid, and exposing that surface portion to one or more femtosecond pulses so as to modify the topography of that portion. The modification can include, e.g., generating a plurality of submicron-sized spikes in an upper layer of the surface.
Abstract:
A method and apparatus for reducing unwanted pressure changes generated during treatment of a target material in a liquid-filled space with a laser. A pilot pulse is generated to produce a gas bubble in a region of the liquid-filled space before a processing pulse is directed through the region and onto the target material. An impulse spacing between the pilot pulse and the processing pulse is optimized by detecting an oscillation period of the gas bubble. The pilot pulse and processing pulse may be generated by the same or separate laser sources and directed toward the target material by the same or separate conductors, respectively.