摘要:
Method and devices are disclosed for device manufacture of gallium nitride devices by growing a gallium nitride layer on a silicon substrate using Atomic Layer Deposition (ALD) followed by rapid thermal annealing. Gallium nitride is grown directly on silicon or on a barrier layer of aluminum nitride grown on the silicon substrate. One or both layers are thermally processed by rapid thermal annealing. Preferably the ALD process use a reaction temperature below 550° C. and preferable below 350° C. The rapid thermal annealing step raises the temperature of the coating surface to a temperature ranging from 550 to 1500° C. for less than 12 msec.
摘要:
Methods of forming 2D metal chalcogenide films using laser-assisted atomic layer deposition are disclosed. A direct-growth method includes: adhering a layer of metal-bearing molecules to the surface of a heated substrate; then reacting the layer of metal-bearing molecules with a chalcogenide-bearing radicalized precursor gas delivered using a plasma to form an amorphous 2D film of the metal chalcogenide; then laser annealing the amorphous 2D film to form a crystalline 2D film of the metal chalcogenide, which can have the form MX or MX2, where M is a metal and X is the chalcogenide. An indirect growth method that includes forming an MO3 film is also disclosed.
摘要:
Atomic Layer Deposition (ALD) is used for heteroepitaxial film growth at reaction temperatures ranging from 80-400° C. The substrate and film materials are preferably selected to take advantage of Domain Matched Epitaxy (DME). A laser annealing system is used to thermally anneal deposition layers after deposition by ALD. In preferred embodiments a silicon substrate is overlaid with an AIN nucleation layer and laser annealed. Thereafter a GaN device layers is applied over the AIN layer by an ALD process and then laser annealed. In a further example embodiment a transition layer is applied between the GaN device layer and the AIN nucleation layer. The transition layer comprises one or more different transition material layers each comprising a AlxGa1-x compound wherein the composition of the transition layer is continuously varied from AIN to GaN.
摘要翻译:原子层沉积(ALD)用于在80-400℃的反应温度下进行异质外延膜生长。优选选择底物和膜材料以利用域匹配外延(DME)。 激光退火系统用于通过ALD沉积后对沉积层进行热退火。 在优选实施例中,硅衬底用AIN成核层覆盖并进行激光退火。 此后,通过ALD工艺将GaN器件层施加在AIN层上,然后进行激光退火。 在另一示例实施例中,将过渡层施加在GaN器件层和AIN成核层之间。 过渡层包括一个或多个不同的过渡材料层,每个过渡材料层均包含Al x Ga 1-x化合物,其中过渡层的组成从AIN到GaN连续变化。
摘要:
Method and devices are disclosed for device manufacture of gallium nitride devices by growing a gallium nitride layer on a silicon substrate using Atomic Layer Deposition (ALD) followed by rapid thermal annealing. Gallium nitride is grown directly on silicon or on a barrier layer of aluminum nitride grown on the silicon substrate. One or both layers are thermally processed by rapid thermal annealing. Preferably the ALD process use a reaction temperature below 550° C. and preferable below 350° C. The rapid thermal annealing step raises the temperature of the coating surface to a temperature ranging from 550 to 1500° C. for less than 12 msec.
摘要:
Atomic Layer Deposition (ALD) is used for heteroepitaxial film growth at reaction temperatures ranging from 80-400° C. The substrate and film materials are preferably selected to take advantage of Domain Matched Epitaxy (DME). A laser annealing system is used to thermally anneal deposition layers after deposition by ALD. In preferred embodiments a silicon substrate is overlaid with an AIN nucleation layer and laser annealed. Thereafter a GaN device layers is applied over the AIN layer by an ALD process and then laser annealed. In a further example embodiment a transition layer is applied between the GaN device layer and the AIN nucleation layer. The transition layer comprises one or more different transition material layers each comprising a AlxGa1-x compound wherein the composition of the transition layer is continuously varied from AIN to GaN.
摘要:
Method and devices are disclosed for device manufacture of gallium nitride devices by growing a gallium nitride layer on a silicon substrate using Atomic Layer Deposition (ALD) followed by rapid thermal annealing. Gallium nitride is grown directly on silicon or on a barrier layer of aluminum nitride grown on the silicon substrate. One or both layers are thermally processed by rapid thermal annealing. Preferably the ALD process use a reaction temperature below 550° C. and preferable below 350° C. The rapid thermal annealing step raises the temperature of the coating surface to a temperature ranging from 550 to 1500° C. for less than 12 msec.
摘要:
Atomic Layer Deposition (ALD) is used for heteroepitaxial film growth at reaction temperatures ranging from 80-400° C. The substrate and film materials are preferably matched to take advantage of Domain Matched Epitaxy (DME). A laser annealing system is used to thermally anneal deposition layer after deposition by ALD. In preferred embodiments, a silicon substrate is overlaid with an AlN nucleation layer and laser annealed. Thereafter a GaN device layer is applied over the AlN layer by an ALD process and then laser annealed. In a further example embodiment, a transition layer is applied between the GaN device layer and the AlN nucleation layer. The transition layer comprises one or more different transition material layers each comprising a AlxGa1-xN compound wherein the composition of the transition layer is continuously varied from AlN to GaN.
摘要:
Method and devices are disclosed for device manufacture of gallium nitride devices by growing a gallium nitride layer on a silicon substrate using Atomic Layer Deposition (ALD) followed by rapid thermal annealing. Gallium nitride is grown directly on silicon or on a barrier layer of aluminum nitride grown on the silicon substrate. One or both layers are thermally processed by rapid thermal annealing. Preferably the ALD process use a reaction temperature below 550° C. and preferable below 350° C. The rapid thermal annealing step raises the temperature of the coating surface to a temperature ranging from 550 to 1500° C. for less than 12 msec.
摘要:
Atomic Layer Deposition (ALD) is used for heteroepitaxial film growth at reaction temperatures ranging from 80-400° C. The substrate and film materials are preferably matched to take advantage of Domain Matched Epitaxy (DME). A laser annealing system is used to thermally anneal deposition layer after deposition by ALD. In preferred embodiments, a silicon substrate is overlaid with an AlN nucleation layer and laser annealed. Thereafter a GaN device layer is applied over the AlN layer by an ALD process and then laser annealed. In a further example embodiment, a transition layer is applied between the GaN device layer and the AlN nucleation layer. The transition layer comprises one or more different transition material layers each comprising a AlxGa1-xN compound wherein the composition of the transition layer is continuously varied from AlN to GaN.
摘要:
Methods of forming 2D metal chalcogenide films using laser-assisted atomic layer deposition are disclosed. A direct-growth method includes: adhering a layer of metal-bearing molecules to the surface of a heated substrate; then reacting the layer of metal-bearing molecules with a chalcogenide-bearing radicalized precursor gas delivered using a plasma to form an amorphous 2D film of the metal chalcogenide; then laser annealing the amorphous 2D film to form a crystalline 2D film of the metal chalcogenide, which can have the form MX or MX2, where M is a metal and X is the chalcogenide. An indirect growth method that includes forming an MO3 film is also disclosed.