Abstract:
Semicondcutor devices include a passivating layer over a pair of fins. A barrier extends through the passivating layer and between the pair of fins and that electrically isolates the fins. Electrical contacts are formed through the passivating layer to the fins. The electrical contacts directly contact sidewalls of the barrier.
Abstract:
A semiconductor device includes a fin patterned in a substrate; a gate disposed over and substantially perpendicular to the fin; a pair of epitaxial contacts including a III-V material over the fin and on opposing sides of the gate; and a channel region between the pair of epitaxial contacts under the gate comprising an undoped III-V material between doped III-V materials, the doped III-V materials including a dopant in an amount in a range from about 1e18 to about 1e20 atoms/cm3 and contacting the epitaxial contacts.
Abstract:
One illustrative method disclosed herein includes removing the sidewall spacers and a gate cap layer so as to thereby expose an upper surface and sidewalls of a sacrificial gate structure, forming an etch stop layer above source/drain regions of a device and on the sidewalls and upper surface of the sacrificial gate structure, forming a first layer of insulating material above the etch stop layer, removing the sacrificial gate structure so as to define a replacement gate cavity that is laterally defined by portions of the etch stop layer, forming a replacement gate structure in the replacement gate cavity, and forming a second gate cap layer above the replacement gate structure.
Abstract:
A FinFET device includes a substrate, a gate structure positioned above the substrate, and sidewall spacers positioned adjacent to the gate structure. An epi semiconductor material is positioned in source and drain regions of the FinFET device and laterally outside of the sidewall spacers. A fin extends laterally under the gate structure and the sidewall spacers in a gate length direction of the FinFET device, wherein the end surfaces of the fin abut and engage the epi semiconductor material. A stressed material is positioned in a channel cavity located below the fin, above the substrate, and laterally between the epi semiconductor material, the stressed material having a top surface that abuts and engages a bottom surface of the fin, a bottom surface that abuts and engages the substrate, and end surfaces that abut and engage the epi semiconductor material.
Abstract:
A method for making a semiconductor device includes forming laterally spaced-apart semiconductor fins above a substrate. At least one dielectric layer is formed adjacent an end portion of the semiconductor fins and within the space between adjacent semiconductor fins. A pair of sidewall spacers is formed adjacent outermost semiconductor fins at the end portion of the semiconductor fins. The at least one dielectric layer and end portion of the semiconductor fins between the pair of sidewall spacers are removed. Source/drain regions are formed between the pair of sidewall spacers.
Abstract:
An integrated circuit transistor is formed on a substrate. A trench in the substrate is at least partially filled with a metal material to form a source (or drain) contact buried in the substrate. The substrate further includes a source (or drain) region in the substrate which is in electrical connection with the source (or drain) contact. The substrate further includes a channel region adjacent to the source (or drain) region. A gate dielectric is provided on top of the channel region and a gate electrode is provided on top of the gate dielectric. The substrate may be of the silicon on insulator (SOI) or bulk type. The buried source (or drain) contact makes electrical connection to a side of the source (or drain) region using a junction provided at a same level of the substrate as the source (or drain) and channel regions.
Abstract:
One method disclosed herein includes, among other things, performing a process operation on an exposed surface of a substrate so as to form an H-terminated silicon surface, selectively forming a sacrificial material layer within a replacement gate cavity but not on the H-terminated silicon surface, forming a high-k layer of insulating material within the replacement gate cavity above the H-terminated silicon surface and laterally between first spaced-apart portions of the sacrificial material layer, and forming a work-function adjusting material layer in the gate cavity, wherein the work-function adjusting material layer has a substantially planar upper surface that extends between second spaced-apart portions of the sacrificial material layer formed on the sidewall spacers.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In one example, an integrated circuit includes a semiconductor substrate. A first fin and a second fin are adjacent to each other extending from the semiconductor substrate. The first fin has a first upper section and the second fin has a second upper section. A first epi-portion overlies the first upper section and a second epi-portion overlies the second upper section. A first silicide layer overlies the first epi-portion and a second silicide layer overlies the second epi-portion. The first and second silicide layers are spaced apart from each other to define a lateral gap. A dielectric spacer is formed of a dielectric material and spans the lateral gap. A contact-forming material overlies the dielectric spacer and portions of the first and second silicide layers that are laterally above the dielectric spacer.
Abstract:
One method disclosed includes, among other things, covering the top surface and a portion of the sidewalls of an initial fin structure with etch stop material, forming a sacrificial gate structure around the initial fin structure, forming a sidewall spacer adjacent the sacrificial gate structure, removing the sacrificial gate structure, with the etch stop material in position, to thereby define a replacement gate cavity, performing at least one etching process through the replacement gate cavity to remove a portion of the semiconductor substrate material of the fin structure positioned under the replacement gate cavity that is not covered by the etch stop material so as to thereby define a final fin structure and a channel cavity positioned below the final fin structure and substantially filling the channel cavity with a stressed material.
Abstract:
A method for making a semiconductor device may include forming, above a substrate, first and second semiconductor regions laterally adjacent one another and each including a first semiconductor material. The first semiconductor region may have a greater vertical thickness than the second semiconductor region and define a sidewall with the second semiconductor region. The method may further include forming a spacer above the second semiconductor region and adjacent the sidewall, and forming a third semiconductor region above the second semiconductor region and adjacent the spacer, with the second semiconductor region including a second semiconductor material different than the first semiconductor material. The method may also include removing the spacer and portions of the first semiconductor material beneath the spacer, forming a first set of fins from the first semiconductor region, and forming a second set of fins from the second and third semiconductor regions.