Abstract:
Various embodiments include a silicon-based optical waveguide structure locally on a bulk silicon substrate, and systems and program products for forming such a structure by modifying an integrated circuit (IC) design structure. Embodiments include implementing processes of preparing manufacturing data for formation of the IC design structure in a computer-implemented IC formation system, wherein the preparing of the manufacturing data includes inserting instructions into the manufacturing data to convert an edge of the at least one shape from a crystallographic direction to a crystallographic direction.
Abstract:
At least one isolation trench formed in a layer stack including substrate, channel, and upper gate layers define a channel in the channel layer. Lateral etching from the isolation trench(es) can form lateral cavities in the substrate and upper gate layer to substantially simultaneously form self-aligned lower and upper gates. The lower gate undercuts the channel, the upper gate is narrower than the channel, and a source and a drain can be formed on opposed ends of the channel. As a result, source-drain capacitance and gate-drain capacitance can be reduced, increasing speed of the resulting FET.
Abstract:
Device structures and design structures for a bipolar junction transistor. An intrinsic base is formed on the substrate, a terminal is formed on the intrinsic base, and an extrinsic base is formed that is arranged in juxtaposition with the intrinsic base on the substrate. The intrinsic base and terminal are respectively comprised of first and second semiconductor materials.
Abstract:
The present disclosure relates to integrated circuit (IC) structures and methods of forming the same. An IC structure according to the present disclosure can include: a doped substrate region adjacent to an insulating region; a crystalline base structure including: an intrinsic base region located on and contacting the doped substrate region, the intrinsic base region having a first thickness; an extrinsic base region adjacent to the insulating region, wherein the extrinsic base region has a second thickness greater than the first thickness; a semiconductor layer located on the intrinsic base region of the crystalline base structure; and a doped semiconductor layer located on the semiconductor layer.
Abstract:
The present disclosure generally provides for an integrated circuit (IC) structure with a bulk silicon finFET and methods of forming the same. An IC structure according to the present disclosure can include: a bulk substrate; a finFET located on a first region of the bulk substrate; and a layered dummy structure located on a second region of the bulk substrate, wherein the layered dummy structure includes a first crystalline semiconductive layer, a second crystalline semiconductive layer positioned on the first crystalline semiconductive layer, wherein the first crystalline semiconductive layer comprises a material distinct from the second crystalline semiconductive layer, and a third crystalline semiconductive layer positioned on the second crystalline semiconductive layer, wherein the third crystalline semiconductive layer comprises the material distinct from the second crystalline semiconductive layer.