摘要:
Embodiments of a multi-chip module (MCM) are described. This MCM includes a first semiconductor die and a second semiconductor die, where a given semiconductor die, which can be the first semiconductor die or the second semiconductor die, includes proximity connectors proximate to a surface of the given semiconductor die. Moreover, the given semiconductor die is configured to communicate signals with the other semiconductor die via proximity communication through one or more of the proximity connectors. Furthermore, the MCM includes an alignment plate and a top plate coupled to the alignment plate. This alignment plate includes a first negative feature configured to accommodate the first semiconductor die and a second negative feature configured to accommodate the second semiconductor die, and the top plate includes a positive feature. Note that the positive feature is coupled to the first semiconductor die, and the positive feature facilitates mechanical positioning of the first semiconductor die.
摘要:
Embodiments of a multi-chip module (MCM) are described. This MCM includes a first semiconductor die and a second semiconductor die, where a given semiconductor die, which can be the first semiconductor die or the second semiconductor die, includes proximity connectors proximate to a surface of the given semiconductor die. Moreover, the given semiconductor die is configured to communicate signals with the other semiconductor die via proximity communication through one or more of the proximity connectors. Furthermore, the MCM includes an alignment plate and a top plate coupled to the alignment plate. This alignment plate includes a first negative feature configured to accommodate the first semiconductor die and a second negative feature configured to accommodate the second semiconductor die, and the top plate includes a positive feature. Note that the positive feature is coupled to the first semiconductor die, and the positive feature facilitates mechanical positioning of the first semiconductor die.
摘要:
The described embodiments provide a system that facilitates inter-chip alignment for proximity communication and power delivery. The system includes a first integrated circuit chip and a second integrated circuit chip, both of which whose surfaces have corresponding etch pit wells configured to align with each other. A shaped structure is placed in an etch pit well of the first integrated circuit chip such that when the corresponding etch pit well of the second integrated circuit chip is substantially aligned with the etch pit well of the first integrated circuit chip, the shaped structure mates with both the etch pit well of the first integrated circuit chip and with the corresponding etch pit well of the second integrated circuit chip, thereby aligning the first integrated circuit chip with the second integrated circuit chip. In some embodiments the etch pit wells include conductive structures for routing power through a conductive shaped structure.
摘要:
Embodiments of an integrated circuit are described. This integrated circuit includes: a clock-generator circuit configured to provide a clock signal; an optical clock path coupled to the clock-generator circuit; and a latch coupled to the optical clock path. This optical clock path is configured to distribute an optical signal corresponding to the clock signal. Furthermore, the optical clock path is configured to optically set a skew value for the optical signal, and is configured to selectively gate distribution of the optical signal to the latch based on activity of the latch. Note that the selective gating is performed optically.
摘要:
The described embodiments provide a system that facilitates inter-chip alignment for proximity communication and power delivery. The system includes a first integrated circuit chip and a second integrated circuit chip, both of which whose surfaces have corresponding etch pit wells configured to align with each other. A shaped structure is placed in an etch pit well of the first integrated circuit chip such that when the corresponding etch pit well of the second integrated circuit chip is substantially aligned with the etch pit well of the first integrated circuit chip, the shaped structure mates with both the etch pit well of the first integrated circuit chip and with the corresponding etch pit well of the second integrated circuit chip, thereby aligning the first integrated circuit chip with the second integrated circuit chip. In some embodiments the etch pit wells include conductive structures for routing power through a conductive shaped structure.
摘要:
One embodiment of the present invention provides a system for facilitating proximity communication between semiconductor chips. The system includes a base chip and a bridge chip, each of which includes an active face upon which active circuitry and signal pads reside, and a back face opposite the active face. The active face of the bridge chip is bonded to the active face of the base chip. Then, an identified portion of the active face of the bridge chip is thinned via etching and is removed by planarizing the back face of the bridge chip, thereby creating an opening in the bridge chip that exposes a portion of the active face of the base chip.
摘要:
Embodiments of a switch are described. This switch includes input ports configured to receive signals (which include data) and output ports configured to output the signals. In addition, the switch includes switching elements and a flow-control mechanism, which is configured to provide flow-control information associated with the data to the switching elements via an optical control path. These switching elements are configured to selectively couple the input ports to the output ports based on the flow-control information. Furthermore, a given switching element in the switching elements is coupled to a given input port and a given output port via electrical signal paths that are configured to use proximity communication to communicate the data.
摘要:
A chip package includes a substrate having a positive feature, which is defined on a surface of the substrate and which protrudes above a region on the surface proximate to the positive feature. Furthermore, the chip package includes a mechanical reinforcement mechanism defined on the substrate proximate to the positive feature that increases a lateral shear strength of the positive feature relative to the substrate. In this way, the chip package may facilitate increased reliability of a multi-chip module (MCM) that includes the chip package.
摘要:
A multi-chip module (MCM) is described. This MCM includes at least two substrates that are remateably mechanically coupled by positive and negative features on facing surfaces of the substrates. These positive and negative features mate with each other. In particular, a positive feature may mate with a given pair of negative features, which includes negative features on each of the substrates. Furthermore, at least one of the negative features in the given pair may include a hard magnetic material, and the positive feature and the other negative feature in the given pair may include a soft magnetic material that provide a flux-return path to the hard magnetic material. In this way, the hard magnetic material may facilitate the remateable mechanical coupling of the substrates.
摘要:
In a proximity communication system, transmit elements on one chip are aligned with receive elements on a second chip juxtaposed with the first chip. However, if the elements are misaligned, either statically or dynamically, the coupling between chips is degraded. The misalignment may be compensated by controllably degrading performance of the system. For example, the transmit signal strength may be increased. The bit period or the time period for biasing each bit may be increased, thereby decreasing the bandwidth. Multiple coupling elements, such as capacitors, may be ganged together, thereby decreasing the number of channels. The granularity of symbols, such as images, may be increased by decreasing the number of bits per symbol. Multiple coupling elements, such as capacitors, may be ganged together, thereby decreasing the number of channels.