摘要:
A method of making a semiconductor device including a plurality of gate electrodes (6a, 6b, 6c, 6d) arranged on the surface of a semiconductor substrate (1) with insulating layers (5, 8) covering the top and the side walls of the gate electrodes. The spaces between the opposing side walls of adjacent gate electrodes on the surface of the element isolation region (2) are smaller than twice the thickness of the thinnest insulating layer (8) among the insulating layers of the side walls of the gate electrodes on the surface of the active regions. The space (14) between the gate electrodes on the element isolation region is filled with the insulating isolation layer (8) so that unevenness in the underlying portion on the element isolation region on which the conductive interconnection layer (10) to be formed is reduced, preventing thinning of the conductive interconnection layer and disconnection due to excessive etching of a resist film in patterning the conductive interconnection layer.
摘要:
A semiconductor device includes a MOS type field effect transistor whose gate electrode (4) has its surface covered with a first insulating film (5) and left and right sides provided with a pair of second insulating films (10). A first conductive layer (12, 13) is formed on the surface of the source/drain region (8, 11) and the surface of one of a pair of second insulating films (10) which are positioned on one side of the gate electrode (4). A third insulating film (24b) is formed at least on the surface of the second insulating film (10) on which the first conductive layer (12, 13) is not formed. A second conductive layer (18) is provided on the surface of the third insulating film (24b) and on the source/drain region (8, 11) on which the third insulating film (24b) is formed. This structure enables provision of a semiconductor device in which a contact hole can be formed in self-alignment, independent from the influence of errors in the step of patterning a resist mask.
摘要:
A dynamic random access memory (DRAM) is disclosed that can effectively prevent the formation of steps in the boundary region of a memory cell array 101 and a peripheral circuit 102, even in high integrated devices. This DRAM includes a double peripheral wall 20 of peripheral walls 20a and 20b at the boundary region of the memory cell array 101 and the peripheral circuit 102 of a P type silicon substrate 1, extending vertically upwards from the P type silicon substrate 1. The upper surfaces of the devices formed on the memory cell array and the peripheral circuit 102 in forming devices on the memory cell array 101 and the peripheral circuit 102 are substantially planarized, by virture of the double peripheral wall 20, to effectively prevent steps from being generated in the boundary region of the memory cell array 101 and the peripheral circuit 102, even in high integrated devices.
摘要:
A one transistor memory cell for a flash EEPROM includes: a first control gate which is disposed on a first channel region between a source region and a drain region and separated therefrom by a first insulating film; a floating gate disposed on a second channel region and is separated therefrom by a second insulating film, the floating gate disposed on the first control gate and separated therefrom by a first interlayer insulating film; and a second control gate disposed on a surface of said floating gate and separated therefrom by a second interlayer insulating film; and wherein one end of the second control gate and one end of the first control gate are electrically connected to each other through a third control gate, thereby enhancing capacity between the control gates and the floating gate.
摘要:
First, second, third and fourth impurity regions are formed on a major surface of a semiconductor substrate with prescribed spaces, to define first, second and third channel regions in portions held between the same. A select gate is formed on the first channel region through an insulating film, to define a transistor with the first and second impurity regions. A part of a control gate is formed on the third channel region through an insulating film, to define a transistor with the third and fourth impurity regions. A floating gate is formed on the second channel region and parts of the select gate and the control gate through an insulating film, to define a transistor with the second and third impurity regions. Both end portions of the floating gate are inwardly separated from upper positions of respective outer ends of parts of the select gate and the control gate, in order to improve an effect of shielding the floating gate against a fourth impurity region. Another part of the control gate is formed on the floating gate through an insulating film. The first impurity region is connected to a bit line and the fourth impurity region is connected to a source region respectively.
摘要:
A non-volatile semiconductor device includes an n type well formed in a semiconductor substrate having a surface, the surface having a plurality of stripe shaped grooves and a plurality of stripe shaped ribs, a plurality of stripe shaped p type diffusion regions formed in upper parts of each of the plurality of ribs, the plurality of stripe shaped p type diffusion regions being parallel to a longitudinal direction of the ribs, a tunneling insulation film formed on the grooves and the ribs, a charge storage layer formed on the tunneling insulating film, a gate insulation film formed on the charge storage layer, and a plurality of stripe shaped conductors formed on the gate insulating film, the plurality of stripe shaped conductors arranged in a direction intersecting the longitudinal direction of the ribs with a predetermined interval wherein an impurity diffusion structure in the ribs are asymmetric.
摘要:
A hot electron (BBHE) is generated close to a drain by tunneling between bands, and it data writing is performed by injecting the hot electron into a charge storage layer. When Vg is a gate voltage, Vsub is a cell well voltage, Vs is a source voltage and Vd is a drain voltage, a relation of Vg>Vsub>Vs>Vd is satisfied, Vg−Vd is a value of a potential difference required for generating a tunnel current between the bands or higher, and Vsub−Vd is substantially equivalent to a barrier potential of the tunnel insulating film or higher.
摘要:
A hot electron (BBHE) is generated close to a drain by tunneling between bands, and it data writing is performed by injecting the hot electron into a charge storage layer. When Vg is a gate voltage, Vsub is a cell well voltage, Vs is a source voltage and Vd is a drain voltage, a relation of Vg>Vsub>Vs>Vd is satisfied, Vg−Vd is a value of a potential difference required for generating a tunnel current between the bands or higher, and Vsub−Vd is substantially equivalent to a barrier potential of the tunnel insulating film or higher.
摘要:
A semiconductor chip mounted interposer (60) is configured by executing wire bonding between a semiconductor chip (50) and an interposer (20), in which terminals (21) that connect to terminals (51) of the chip (50) and separate terminals (22) are formed, on the upper face of the interposer (20). A semiconductor chip (30) is mounted to the top face of a package substrate (10), the interposer (60) is adhered to the upper portion of the chip (30), and wire bonding is executed between the terminals (22) and terminals (11′). When configuring a semiconductor device with a plurality of semiconductor chips combined into one package in this manner, KGD (Known-Good-Die) can easily be guaranteed for each semiconductor chip, and semiconductor devices can be fabricated with a high yield of good units. Also, the semiconductor chips can be used as-is, without restricting the position, pitch, signal arrangement, or the like, of their terminals.
摘要:
A hot electron (BBHE) is generated close to a drain by tunneling between bands, and it data writing is performed by injecting the hot electron into a charge storage layer. When Vg is a gate voltage, Vsub is a cell well voltage, Vs is a source voltage and Vd is a drain voltage, a relation of Vg>Vsub>Vs>Vd is satisfied, Vg−Vd is a value of a potential difference required for generating a tunnel current between the bands or higher, and Vsub−Vd is substantially equivalent to a barrier potential of the tunnel insulating film or higher.