摘要:
A semiconductor device and method for fabricating the same. The semiconductor device comprises a substrate with a gate stack thereon, wherein the gate stack comprises a high-k dielectric layer and a conductive layer sequentially overlying a portion of the substrate. An oxidation-proof layer overlies sidewalls of the gate stack. A pair of insulating spacers oppositely overlies sidewalls of the gate stack and the oxidation-proof layers thereon and a pair of source/drain regions is oppositely formed in the substrate adjacent to the gate stack, wherein the oxidation-proof layer suppresses oxidation encroachment between the gate stack and the substrate.
摘要:
A CMOS device structure, and a method of fabricating the CMOS device, featuring a gate insulator layer comprised of a high k metal oxide layer, has been developed. The process features formation of recessed, heavily doped source/drain regions, and of vertical, polysilicon LDD spacers, prior to deposition of the high k metal oxide layer. Removal of a silicon nitride shape, previously used as a mask for definition of the recessed regions, which in turn are used for accommodation of the heavily doped source/drain regions, provides the space to be occupied by the high k metal oxide layer. The integrity of the high k, gate insulator layer, butted by the vertical polysilicon spacers, and overlying a channel region provided by the non-recessed portion of the semiconductor substrate, is preserved via delayed deposition of the metal oxide layer, performed after high temperature anneals such as the activation anneal for heavily doped source/drain regions, as well as the anneal used for metal silicide formation.
摘要:
A MOSFET includes a gate having a high-k gate dielectric on a substrate and a gate electrode on the gate dielectric. The gate dielectric protrudes beyond the gate electrode. A deep source and drain having shallow extensions are formed on either side of the gate. The deep source and drain are formed by selective in-situ doped epitaxy or by ion implantation and the extensions are formed by selective, in-situ doped epitaxy. The extensions lie beneath the gate in contact with the gate dielectric. The material of the gate dielectric and the amount of its protrusion beyond the gate electrode are selected so that epitaxial procedures and related procedures do not cause bridging between the gate electrode and the source/drain extensions. Methods of fabricating the MOSFET are described.
摘要:
A method for treating a gate structure comprising a high-K gate dielectric stack to improve electric performance characteristics including providing a gate dielectric layer stack including a binary oxide over a silicon substrate; forming a polysilicon layer over the gate dielectric layer stack; lithographically patterning and etching to form a gate structure; and, carrying out at least one plasma treatment of the gate structure comprising a plasma source gas selected from the group consisting of H2, N2, O2, and NH3.
摘要:
A method for forming an improved gate stack structure having improved electrical properties in a gate structure forming process A method for forming a high dielectric constant gate structure including providing a silicon substrate comprising exposed surface portions; forming an interfacial layer over the exposed surface portions having a thickness of less than about 10 Angstroms; forming a high dielectric constant metal oxide layer over the interfacial layer having a dielectric constant of greater than about 10; forming a barrier layer over the high dielectric constant metal oxide layer; forming an electrode layer over the barrier layer; and, etching according to an etching pattern through a thickness of the electrode layer, barrier layer, high dielectric constant material layer, and the interfacial layer to form a high dielectric constant gate structure.
摘要:
A method of forming dual gate dielectric layers that is extendable to satisfying requirements for 50 nm and 70 nm technology nodes is described. A substrate is provided with STI regions that separate device areas. An interfacial layer and a high k dielectric layer are sequentially deposited on the substrate. The two layers are removed over one device area and an ultra thin silicon oxynitride layer with an EOT
摘要:
A CMOS device structure, and a method of fabricating the CMOS device, featuring a gate insulator layer comprised of a high k metal oxide layer, has been developed. The process features formation of recessed, heavily doped source/drain regions, and of vertical, polysilicon LDD spacers, prior to deposition of the high k metal oxide layer. Removal of a silicon nitride shape, previously used as a mask for definition of the recessed regions, which in turn are used for accommodation of the heavily doped source/drain regions, provides the space to be occupied by the high k metal oxide layer. The integrity of the high k, gate insulator layer, butted by the vertical polysilicon spacers, and overlying a channel region provided by the non-recessed portion of the semiconductor substrate, is preserved via delayed deposition of the metal oxide layer, performed after high temperature anneals such as the activation anneal for heavily doped source/drain regions, as well as the anneal used for metal silicide formation.
摘要:
A plasma treatment method used to form improved PECVD silicon nitride film passivation layers over metal interconnections on ULSI circuits is achieved. The process is carried out in a single PECVD reactor. After depositing a thin silicon oxide stress-release layer over the metal lines, a plasma-enhanced CVD silicon nitride layer is deposited, and subsequently a plasma treatment step is carried out on the silicon nitride layer. The use of a sufficiently thin silicon nitride layer eliminates photoresist trapping at the next photoresist process step that would otherwise be trapped in the voids (keyholes) that typically form in the silicon nitride passivation layer between the closely spaced metal lines, and can cause corrosion of the metal. The plasma treatment in He, Ar, or a mixture of the two, is then used to densify the silicon nitride layer and to substantially reduce pinholes that would otherwise cause interlevel metal shorts.
摘要:
This description relates to a method including forming an interfacial layer over a semiconductor substrate. The method further includes etching back the interfacial layer. The method further includes performing an ultraviolet (UV) curing process on the interfacial layer. The UV curing process includes supplying a gas flow rate ranging from 10 standard cubic centimeters per minute (sccm) to 5 standard liters per minute (slm), wherein the gas comprises inert gas, and heating the interfacial layer at a temperature less than or equal to 700° C. The method further includes depositing a high-k dielectric material over the interfacial layer.
摘要:
A device and method of formation are provided for a high-k gate dielectric and gate electrode. The high-k dielectric material is formed, and a silicon-rich film is formed over the high-k dielectric material. The silicon-rich film is then treated through either oxidation or nitridation to reduce the Fermi-level pinning that results from both the bonding of the high-k material to the subsequent gate conductor and also from a lack of oxygen along the interface of the high-k dielectric material and the gate conductor. A conductive material is then formed over the film through a controlled process to create the gate conductor.