Abstract:
Some embodiments include methods for fabricating memory cell constructions. A memory cell may be formed to have a programmable material directly against a material having a different coefficient of expansion than the programmable material. A retaining shell may be formed adjacent the programmable material. The memory cell may be thermally processed to increase a temperature of the memory cell to at least about 300° C., causing thermally-induced stress within the memory cell. The retaining shell may provide a stress which substantially balances the thermally-induced stress. Some embodiments include memory cell constructions. The constructions may include programmable material directly against silicon nitride that has an internal stress of less than or equal to about 200 megapascals. The constructions may also include a retaining shell silicon nitride that has an internal stress of at least about 500 megapascals.
Abstract:
Some embodiments include methods for fabricating memory cell constructions. A memory cell may be formed to have a programmable material directly against a material having a different coefficient of expansion than the programmable material. A retaining shell may be formed adjacent the programmable material. The memory cell may be thermally processed to increase a temperature of the memory cell to at least about 300° C., causing thermally-induced stress within the memory cell. The retaining shell may provide a stress which substantially balances the thermally-induced stress. Some embodiments include memory cell constructions. The constructions may include programmable material directly against silicon nitride that has an internal stress of less than or equal to about 200 megapascals. The constructions may also include a retaining shell silicon nitride that has an internal stress of at least about 500 megapascals.
Abstract:
A memory array comprising strings of memory cells comprises laterally-spaced memory blocks individually comprising a vertical stack comprising alternating insulative tiers and conductive tiers. Operative channel-material strings of memory cells extend through the insulative tiers and the conductive tiers. The operative channel-material strings in the laterally-spaced memory blocks comprise part of a memory plane. An elevationally-extending wall is in the memory plane laterally-between immediately-laterally-adjacent of the memory blocks and that completely encircles an island that is laterally-between immediately-laterally-adjacent of the memory blocks in the memory plane. Other embodiments, including method are disclosed.
Abstract:
A memory array comprising strings of memory cells comprises laterally-spaced memory blocks individually comprising a vertical stack comprising alternating insulative tiers and conductive tiers. Operative channel-material strings of memory cells extend through the insulative tiers and the conductive tiers. The operative channel-material strings in the laterally-spaced memory blocks comprise part of a memory plane. An elevationally-extending wall is in the memory plane laterally-between immediately-laterally-adjacent of the memory blocks and that completely encircles an island that is laterally-between immediately-laterally-adjacent of the memory blocks in the memory plane. Other embodiments, including method are disclosed.
Abstract:
Method for packaging a semiconductor die assemblies. In one embodiment, a method is directed to packaging a semiconductor die assembly having a first die and a plurality of second dies arranged in a stack over the first die, wherein the first die has a peripheral region extending laterally outward from the stack of second dies. The method can comprise coupling a thermal transfer structure to the peripheral region of the first die and flowing an underfill material between the second dies. The underfill material is flowed after coupling the thermal transfer structure to the peripheral region of the first die such that the thermal transfer structure limits lateral flow of the underfill material.
Abstract:
A memory array comprising strings of memory cells comprises laterally-spaced memory blocks individually comprising a vertical stack comprising alternating insulative tiers and conductive tiers. Operative channel-material strings of memory cells extend through the insulative tiers and the conductive tiers. Insulative pillars are laterally-between and longitudinally-spaced-along immediately-laterally-adjacent of the memory blocks. The pillars are directly against conducting material of conductive lines in the conductive tiers. Other arrays, and methods, are disclosed.
Abstract:
Some embodiments include an integrated assembly having a semiconductor die with memory array regions and one or more regions peripheral to the memory array regions. A stack of alternating insulative and conductive levels extends across the memory array regions and passes into at least one of the peripheral regions. The stack generates bending stresses on the die. At least one stress-moderating region extends through the stack and is configured to alleviate the bending stresses.
Abstract:
Some embodiments include an integrated assembly having a semiconductor die with memory array regions and one or more regions peripheral to the memory array regions. A stack of alternating insulative and conductive levels extends across the memory array regions and passes into at least one of the peripheral regions. The stack generates bending stresses on the die. At least one stress-moderating region extends through the stack and is configured to alleviate the bending stresses.
Abstract:
Stacked semiconductor die assemblies with multiple thermal paths and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a plurality of first semiconductor dies arranged in a stack and a second semiconductor die carrying the first semiconductor dies. The second semiconductor die can include a peripheral portion that extends laterally outward beyond at least one side of the first semiconductor dies. The semiconductor die assembly can further include a thermal transfer feature at the peripheral portion of the second semiconductor die. The first semiconductor dies can define a first thermal path, and the thermal transfer feature can define a second thermal path separate from the first semiconductor dies.
Abstract:
In an example, a method of forming a stacked memory array includes, forming a termination structure passing through a stack of alternating first and second dielectrics in a first region of the stack; forming first and second sets of contacts through the stack of alternating first and second dielectrics in a second region of the stack concurrently with forming the termination structure; forming an opening through the stack of alternating first and second dielectrics between the first and second sets of contacts so that the opening terminates at the termination structure; and removing the first dielectrics from the second region by accessing the first dielectrics through the opening so that the first and second sets of contacts pass through the second dielectrics alternating with spaces corresponding to the removed first dielectrics.