摘要:
The present invention relates to an exhaust emission control device having an NOx adsorbent, and makes it possible to judge whether the performance of the NOx adsorbent is degraded temporarily or permanently. The amounts of NOx and water adsorbed by the NOx adsorbent are measured during an actual operation of an internal combustion engine. A reference line indicating the correlation between a preselected water adsorption amount and NOx adsorption amount is then referenced to determine a reference value y0 of the NOx adsorption amount that corresponds to a measured value x1 of the water adsorption amount. Next, a measured value y1 of the NOx adsorption amount is compared against the reference value y0 to output a signal in which the result of the comparison is reflected.
摘要:
An evaporative fuel adsorbent 32, which adsorbs evaporative fuel, is positioned substantially parallel to a sidewall surface 30 of a surge tank 22. A retention member 34 is positioned between the sidewall surface 22 and evaporative fuel adsorbent 32 to prevent oil, which runs down on the sidewall surface 22, from adhering to the evaporative fuel adsorbent 32. The evaporative fuel adsorbent 32 is mounted on the sidewall surface 30 of the surge tank 22 via the retention member 34.
摘要:
A fuel vapor adsorbing device (10, 60, 70, 70′, 80) for adsorbing residual fuel vapors that remain in an intake conduit (1, 2, 3, 4) of an induction system of an internal combustion engine when the internal combustion engine is stopped may include an adsorbing member (40, 40′) that is constructed to adsorb the residual fuel vapors and is disposed along an inner wall surface of the intake conduit. The adsorbing member is arranged and constructed to form a supplemental intake path (T, T′, T′″) between the adsorbing member and the inner wall surface of the intake conduit, so that intake air of the engine can flow through the supplemental intake path.
摘要:
A converter containing a NOx absorbing and reducing catalyst is disposed in the exhaust passage of an internal combustion engine. The upstream half portion (portion of the inlet side) of the substrate of the NOx absorbing and reducing catalyst in the converter carries the oxygen storage component that absorbs oxygen in the exhaust gas when the air-fuel ratio of the exhaust gas is lean and releases the absorbed oxygen when the air-fuel ratio of the exhaust gas flowing in is rich in addition to carrying the NOx absorbing and reducing catalyst. After NOx is absorbed by the NOx absorbing and reducing catalyst as a result of operating the engine at a lean air-fuel ratio, the engine is operated at a rich air-fuel ratio, so that NOx is released from the NOx absorbing and reducing catalyst and is purified by reduction. Here, oxygen is released from the oxygen storage component carried by the upstream half portion of the substrate and is reacted with the H2 and CO components in the exhaust gas, so that the temperature of the NOx absorbing and reducing catalyst is raised within short periods of time due to the heat of reaction. Therefore, the catalyst exhibits increased activity and the NOx absorbing and reducing catalyst exhibits improved NOx purification capability.
摘要:
An exhaust gas purifying catalyst, for reducing nitrogen oxides and ammonia in an exhaust gas of an internal combustion engine, in an oxidizing atmosphere, is provided. The exhaust gas purifying catalyst comprises a first catalyst having zeolite carrying platinum and copper thereon. Preferably, the exhaust gas purifying catalyst further comprises a second catalyst having zeolite carrying copper thereon. Preferably, the second catalyst is arranged upstream of the first catalyst, with respect to the exhaust gas flow.
摘要:
In an exhaust gas purification device, a three-way catalyst, an NO.sub.x absorbing-reducing catalyst and an NH.sub.3 adsorbing-denitrating catalyst are disposed in an exhaust gas passage of the internal combustion engine. The engine is provided with direct cylinder injection valves which inject fuel directly into the respective cylinders. A control circuit controls the amount of fuel injected from the injection valve so that the air-fuel ratio of the combustion in the cylinders becomes a lean air-fuel ratio during the normal operation of the engine. Therefore, a lean air-fuel ratio exhaust gas is discharged from the cylinders during the normal operation and NO.sub.x, in the exhaust gas is absorbed by the NO.sub.x absorbing-reducing catalyst. When the amount of NO.sub.x absorbed in the NO.sub.x absorbing-reducing catalyst increases to a predetermined level, the control circuit performs an additional fuel injection during the expansion stroke or exhaust stroke of cylinders in order to adjust the air-fuel ratio of the exhaust gas leaving the cylinders to a rich air-fuel ratio. The rich air-fuel ratio exhaust gas leaving the cylinders flows into the three-way catalyst and NO.sub.x in the exhaust gas is converted into NH.sub.3 at the three-way catalyst. When the rich air-fuel ratio exhaust gas flows through the NO.sub.x absorbing-reducing catalyst, NO.sub.x is released from the NO.sub.x absorbing-reducing catalyst and is reduced to N.sub.2 by NH.sub.3 in the exhaust gas.
摘要:
An engine has a plurality of the cylinders. The cylinders are divided into a first cylinder group and a second cylinder group, and each cylinder group is connected, via a corresponding branch exhaust passage, to a common interconnecting exhaust passage. In the interconnecting exhaust passage, an exhaust gas purifying catalyst is arranged. The air-fuel ratio of the exhaust gas of the first cylinder group is made lean to feed oxygen to the exhaust gas purifying catalyst, and the air-fuel ratio of the second cylinder group is made rich to feed fuel for heating to the exhaust gas purifying catalyst, so that the oxygen and the fuel for heating react with each other to heat the exhaust gas purifying catalyst to reactivate the exhaust gas purifying catalyst when the reactivation of the exhaust gas purifying catalyst is must be performed. In each branch exhaust passage, a start catalyst is arranged.
摘要:
In an exhaust gas purification device, a No. 1 cylinder of the engine is operated at a rich air-fuel ratio and other cylinders (No. 2 to No. 4) are operated at a lean air-fuel ratio. The exhaust gases from the No. 1 and No. 2 cylinders are mixed with each other to form a rich air-fuel ratio exhaust gas mixture. Further, since the air-fuel ratio of the No. 2 cylinder is lean, the exhaust gas from the No. 2 cylinder contains a relatively large amount of NO.sub.x. This rich air-fuel ratio exhaust gas mixture which contains a relatively large amount of NO.sub.X is supplied to a three-way catalyst. At the three-way catalyst, part of the NO.sub.X in the exhaust gas mixture is converted to NH.sub.3. The exhaust gas mixture flowing out from the three-way catalyst and the lean exhaust gas from the No. 3 and No. 4 flow into a common exhaust gas passage where they mix with each other to form a lean exhaust gas containing NH.sub.3 from the three-way catalyst and NO.sub.X from the No. 3 and No. 4 cylinders. This lean exhaust gas flows into a denitrating catalyst disposed on the common exhaust gas passage in which NO.sub.X in the exhaust gas is reduced by the NH.sub.3.
摘要:
In the production of a metallic honeycomb body for use as a metallic carrier, for supporting a catalyst, in the purification of an exhaust gas from automobiles or the like, a desired joint site for each layer constituting the metallic honeycomb body is preset, and, when a portion of contact between a metallic corrugated foil and a metallic flat foil for forming the metallic honeycomb body has reached the joint site, a brazing foil which has been cut into a predetermined length is inserted and enfolded in the contact portion.
摘要:
A device for purifying the exhaust gas of an engine having a plurality of cylinders divided into first and second cylinder groups, the first and the second cylinder groups being connected to first and second exhaust passage, respectively, and performing a lean operation, comprises an NH.sub.3 synthesizing catalyst arranged in the first exhaust passage, and an exhaust gas purifying catalyst arranged in an interconnecting passage, which interconnects the first passage downstream of the NH.sub.3 synthesizing catalyst and the second exhaust passage, for purifying the inflowing NO.sub.X and NH.sub.3. An additional engine performing a rich operation is provided and the exhaust gas thereof is fed to the first exhaust gas passage upstream of the NH.sub.3 synthesizing catalyst to make the exhaust gas air-fuel ratio of the exhaust gas flowing into the NH.sub.3 synthesizing catalyst rich, to thereby synthesize NH.sub.3 therein. An amount of NH.sub.3 or NO.sub.X flowing into the exhaust gas purifying catalyst is obtained, and the additional engine is controlled in accordance with the obtained NH.sub.3 or NO.sub.X amount to control the amount of the reducing agent flowing to the exhaust gas purifying catalyst.