Abstract:
A memory device with a novel structure that is suitable for a register file is provided. The memory device includes a first memory circuit and a second memory circuit. The first memory circuit includes a first logic element and a second logic element each of which is configured to perform logic inversion, a selection circuit, a first switch, a second switch, and a third switch. The second memory circuit includes a first transistor in which a channel formation region is provided in an oxide semiconductor film, a second transistor, and a capacitor to which a potential is supplied through the first transistor.
Abstract:
A holding circuit includes first to third input terminals, an output terminal, first to third switches, a capacitor, and a node. The first to third switches control conduction between the node and the first input terminal, conduction between the node and the output terminal, and conduction between the second input terminal and the output terminal, respectively. First and second terminals of the capacitor are electrically connected to the node and the third input terminal, respectively. The first to third switches are each a transistor comprising an oxide semiconductor layer comprising a semiconductor region. Owing to the structure, a potential change of the node in an electrically floating state can be suppressed; thus, the holding circuit can retain its state for a long time. The holding circuit can be used as a memory circuit for backup of a sequential circuit, for example.
Abstract:
A semiconductor device includes a first transistor which includes a first gate electrode below its oxide semiconductor layer and a second gate electrode above its oxide semiconductor layer, and a second transistor which includes a first gate electrode above its oxide semiconductor layer and a second gate electrode below its oxide semiconductor layer and is provided so as to at least partly overlap with the first transistor. In the semiconductor device, a conductive film serving as the second gate electrode of the first transistor and the second gate electrode of the second transistor is shared between the first transistor and the second transistor. Note that the second gate electrode not only controls the threshold voltages (Vth) of the first transistor and the second transistor but also has an effect of reducing interference of an electric field applied from respective first gate electrodes of the first transistor and the second transistor.
Abstract:
A novel semiconductor device and a driving method thereof are provided. In the semiconductor device, a (volatile) node which holds data that is rewritten by arithmetic processing as appropriate and a node in which the data is stored are electrically connected through a source and a drain of a transistor whose channel is formed in an oxide semiconductor layer. The off-state current value of the transistor is extremely low. Therefore, electric charge scarcely leaks through the transistor from the latter node, and thus data can be held in the latter node even in a period during which supply of power source voltage is stopped. In the semiconductor device, a means of setting the potential of the latter node to a predetermined potential is provided. Specifically, a means of supplying a potential corresponding to “1” or “0” that is data stored in the latter node from the former node is provided.
Abstract:
A memory device includes a first memory circuit including a silicon transistor, a selection circuit including a silicon transistor, and a second memory circuit including oxide semiconductor transistors and a storage capacitor, in which one terminal of the storage capacitor is connected to a portion where two oxide semiconductor transistors are connected in series, an output of the second memory circuit is connected to a second input terminal of the selection circuit, and an input of the second memory circuit is connected to a first input terminal of the selection circuit or an output terminal of the first memory circuit.
Abstract:
The present invention provides a memory circuit in which, while the power is not supplied, a data signal that has been held in a memory section corresponding to a volatile memory can be held in a capacitor in a memory section corresponding to a nonvolatile memory. In the nonvolatile memory section, a transistor whose channel is formed in an oxide semiconductor layer allows a signal to be held in the capacitor for a long period. Thus, the memory circuit can hold a logic state (data signal) even while the power supply is stopped. A potential applied to a gate of the transistor whose channel is formed in an oxide semiconductor layer is raised by a booster circuit provided between a wiring for carrying power supply potential and the gate of the transistor, allowing a data signal to be held even by one power supply potential without malfunction.
Abstract:
To supply a signal in which the occurrence of delays is prevented to a storage circuit. To provide a novel semiconductor device in which a load applied to a logic circuit is low. The following structure is completed: a storage circuit to which a plurality of data signals and a selection signal are supplied connects two combination circuits, and a storage circuit has a function of selecting one of a plurality of data signals in accordance with the selection signal. A selection circuit is not necessarily provided between the storage circuit and the combination circuit. As a result, the combination circuit can supply a signal in which the occurrence of delays is prevented to the storage circuit.
Abstract:
The storage device includes a volatile first memory circuit and a nonvolatile second memory circuit which includes a transistor whose channel is formed in an oxide semiconductor layer. In the case of high-frequency driving, during a period when source voltage is applied, a data signal is input to and output from the first memory circuit, and during a part of a period when source voltage is supplied, which is before the supply of the source voltage is stopped, a data signal is input to the second memory circuit. In the case of low-frequency driving, during a period when source voltage is applied, a data signal is input to the second memory circuit, the data signal input to the second memory circuit is input to the first memory circuit, and the data signal input to the first memory circuit is output.
Abstract:
An integrated circuit which can be switched to a resting state and can be returned from the resting state rapidly is provided. An integrated circuit whose power consumption can be reduced without the decrease in operation speed is provided. A method for driving the integrated circuit is provided. The integrated circuit includes a first flip-flop and a second flip-flop including a nonvolatile memory circuit. In an operating state in which power is supplied, the first flip-flop retains data. In a resting state in which supply of power is stopped, the second flip-flop retains data. On transition from the operating state into the resting state, the data is transferred from the first flip-flop to the second flip-flop. On return from the resting state to the operating state, the data is transferred from the second flip-flop to the first flip-flop.
Abstract:
A programmable analog device in which data can be held even when supply of a power supply potential is stopped. The programmable circuit includes unit cells connected in parallel or in series, and each of the unit cells includes an analog element. A conduction state of each of the unit cells is changed between an on state and an off state. Each of the unit cells includes, as a switch of the unit cell, a first transistor having a sufficiently low off-state current and a second transistor, a gate electrode of the second transistor being electrically connected to a source or drain electrode of the first transistor. The conduction state of the unit cell is controlled with a potential of the gate electrode of the second transistor, which can be kept even when no power is supplied thanks to the low off-state current of the first transistor.