摘要:
The present invention provides a method for producing a magnetoresistive element including a tunnel insulating layer, and a first magnetic layer and a second magnetic layer that are laminated so as to sandwich the tunnel insulating layer, wherein a resistance value varies depending on a relative angle between magnetization directions of the first magnetic layer and the second magnetic layer. The method includes the steps of: (i) laminating a first magnetic layer, a third magnetic layer and an Al layer successively on a substrate; (ii) forming a tunnel insulating layer containing at least one compound selected from the group consisting of an oxide, nitride and oxynitride of Al by performing at least one reaction selected from the group consisting of oxidation, nitriding and oxynitriding of the Al layer; and (iii) forming a laminate including the first magnetic layer, the tunnel insulating layer and a second magnetic layer by laminating the second magnetic layer in such a manner that the tunnel insulating layer is sandwiched by the first magnetic layer and the second magnetic layer. The third magnetic layer has at least one crystal structure selected from the group consisting of a face-centered cubic crystal structure and a face-centered tetragonal crystal structure and is (111) oriented parallel to a film plane of the third magnetic layer. According to this production method, it is possible to produce a magnetoresistive element with excellent properties and thermal stability.
摘要:
A semiconductor device of this invention includes: a semiconductor substrate; a gate electrode formed on the semiconductor substrate; a pair of source and drain electrodes respectively formed in regions of the semiconductor substrate situated on opposite sides of the gate electrode in a plan view; and a germanium-containing channel layer situated below the gate electrode to sandwich an gate insulator therebetween and intervening between the pair of source and drain electrodes, wherein a silicide layer forming at least a part of the source and drain electrodes has a lower germanium concentration than the channel layer.
摘要:
A semiconductor integrated circuit fabrication method according to this invention includes: a step of forming a pair of first device forming regions and a pair of second device forming regions in a surface layer portion of a semiconductor substrate by surrounding each of the regions by device isolation; a step of forming a first oxide film covering the surface of the semiconductor substrate after the preceding step; a step of removing an intended portion of the first oxide film to expose the pair of second device forming regions; a step of forming a pair of heterojunction structures, by selective epitaxial growth, on the pair of second device forming regions thus exposed; a step of forming a second oxide film covering the surface of the substrate after the preceding step; and a step of forming a pair of gate electrodes above each of the pair of first device forming regions and the pair of second device forming regions, whereby a normal complementary MOS transistor and a heterojunction complementary MOS transistor are eventually formed in the pair of first device forming regions and the pair of second device forming regions, respectively.
摘要:
Direct softening heat treatment of rolled wire rods comprises the steps of:providing wire rods by hot- or warm-rolling, and immediately following rolling, coiling the rolled wire rods in an annealing furnace. Apparatus therefor comprises an annealing furnace provided with an externally or internally built coiler for rolled wire rods disposed adjacent to a rolling line of said wire rods, the coiler being disposed so as to directly receive the rolled wire rods.
摘要:
Direct softening heat treatment of rolled wire rods comprises the steps:providing wire rods by hot- or warm-rolling, andimmediately following rolling, coiling the rolled wire rods in an annealing furnace. Apparatus therefor comprises an annealing furnace provided with an externally or internally built coiler for rolled wire rods disposed adjacent to a rolling line of said wire rods, the coiler being disposed so as to directly receive the rolled wire rods.
摘要:
A semiconductor integrated circuit fabrication method according to this invention includes: a step of forming a pair of first device forming regions and a pair of second device forming regions in a surface layer portion of a semiconductor substrate by surrounding each of the regions by device isolation; a step of forming a first oxide film covering the surface of the semiconductor substrate after the preceding step; a step of removing an intended portion of the first oxide film to expose the pair of second device forming regions; a step of forming a pair of heterojunction structures, by selective epitaxial growth, on the pair of second device forming regions thus exposed; a step of forming a second oxide film covering the surface of the substrate after the preceding step; and a step of forming a pair of gate electrodes above each of the pair of first device forming regions and the pair of second device forming regions, whereby a normal complementary MOS transistor and a heterojunction complementary MOS transistor are eventually formed in the pair of first device forming regions and the pair of second device forming regions, respectively.
摘要:
The present invention provides a magnetoresistive (MR) element that is excellent in MR ratio and thermal stability and includes at least one magnetic layer including a ferromagnetic material M-X expressed by M100-aXa. Here, M is at least one selected from Fe, Co and Ni, X is expressed by X1bX2cX3d (X1 is at least one selected from Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt and Au, X2 is at least one selected from Al, Sc, Ti, V, Cr, Mn, Ga, Ge, Y, Zr, Nb, Mo, Hf, Ta, W, Re, Zn and lanthanide series elements, and X3 is at least one selected from Si, B, C, N, O, P and S), and a, b, c and d satisfy 0.05≦a≦60, 0≦b≦60, 0≦c≦30, 0≦d≦20, and a=b+c+d.
摘要翻译:本发明提供了一种磁阻(MR)元件,它具有优异的MR比和热稳定性,并且包括至少一个包括由M 100-a X表示的铁磁材料MX的磁性层, / SUB>。 这里,M是选自Fe,Co和Ni中的至少一种,X由X 1表示,X 2, (X 1以上)选自Cu,Ru,Rh,Pd,Ag,Os,Ir中的至少一种, Pt和Au,X 2是选自Al,Sc,Ti,V,Cr,Mn,Ga,Ge,Y,Zr,Nb,Mo,Hf,Ta,W,Re中的至少一种 ,Zn和镧系元素,X 3是选自Si,B,C,N,O,P和S中的至少一种),a,b,c和d满足0.05 < a <= 60,0 <= b <= 60,0 <= c <= 30,0 <= d <= 20,a = b + c + d。
摘要:
A lid unit seals a container main body of a thin-plate supporting container which is conveyed while plural 300 mm-diameter semiconductor wafers are stored in the container. In a wafer retainer which supports the wafers stored in the container main body, the maximum amount of displacement is set in a range of 1.5 to 2.5 mm (ranges from 1/200 to 1/120 of the semiconductor wafer diameter), and proportionality is held between the amount of displacement and external force when the maximum amount of displacement ranges from 1.5 to 2.5 mm. In the states in which the wafer retainer is fitted in the container main body and force is not applied, the wafer retainer is arranged at a position in which the wafer retainer is not in contact with the semiconductor wafers stored in the container main body or at a position in which the wafer retainer is in slight contact with the semiconductor wafers. Therefore, the lid unit can be attached and detached without fixing the container main body, so that vibration-resistant performance and shock-resistant performance are improved by preventing spring resistance force from rapidly increasing, and automatization of the attachment and detachment of the lid unit is easy to realize.
摘要:
Disclosed is a method and apparatus for feeding a material to a hot forging machine in a forging line in which a coiled material is uncoiled, straightened, fed intermittently by pinch rollers through a heating device, cut by a cutting device and then fed into a hot forging machine. The method has the steps of preparing a driving device which drives the pinch rollers mechanically independently from the hot forging machine; picking up the timing of forging conducted by the hot forging machine as an electric signal, and controlling the driving device in accordance with the electric signal.
摘要:
A magnetoresistive element includes a pair of ferromagnetic layers and a non-magnetic layer arranged between the ferromagnetic layers. At least one of the ferromagnetic layers has a composition expressed by (MxLy)100-zRz at the interface with the non-magnetic layer. The non-magnetic layer includes at least one element selected from the group consisting of B, C, N, O, and P. Here, M is FeaCobNic, L is at least one element selected from the group consisting of Pt, Pd, Ir, and Rh, R is an element that has a lower free energy to form a compound with the element of the non-magnetic layer that is at least one selected from the group consisting of B, C, N, O, and P than does any other element included in the composition as M or L, and a, b, c, x, y, and z satisfy a+b+c=100, a≧30, x+y=100, 0
摘要翻译:磁阻元件包括一对铁磁层和布置在铁磁层之间的非磁性层。 铁磁层中的至少一个具有由(M×××××××××××××××××××××××××××composition composition z SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB >在与非磁性层的界面处。 非磁性层包括选自B,C,N,O和P中的至少一种元素。这里,M是Fe L是选自Pt,Pd,Ir和Rh中的至少一种元素,R是具有较低自由能以与非金属元素形成化合物的元素, 磁性层是选自B,C,N,O和P中的至少一种,除了组合物中包含的任何其它元素为M或L,以及a,b,c,x,y和 z满足a + b + c = 100,a> = 30,x + y = 100,0