摘要:
Disclosed is a method for forming a bottle shaped trench. The method of the present invention includes steps of providing a substrate; forming a plurality of operation layers on the substrate; forming a photoresist layer on the operation layers to define a predetermined position; forming a trench according to the predetermined position; implanting predetermined ions, which reduces oxidizing rate of the sidewall of the trench, into the upper sidewall of the trench; oxidizing the sidewall of the trench to form an oxide layer, in which the portion of the oxide layer formed at the portion of the sidewall implanted with the ions is thin, while the portion of the oxide layer formed at the portion of the sidewall not implanted with the ions is thick; and removing the oxide layer to form a bottle shaped trench.
摘要:
A method for etching a deep trench in a substrate. A multi-layer hard mask structure is formed overlying the substrate, which includes a first hard mask layer and at least one second hard mask layer disposed thereon. The first hard mask layer is composed of a first boro-silicate glass (BSG) layer and an overlying first undoped silicon glass (USG) layer and the second is composed of a second BSG layer and an overlying second USG layer. A polysilicon layer is formed overlying the multi-layer hard mask structure and then etched to form an opening therein. The multi-layer hard mask structure and the underlying substrate under the opening are successively etched to simultaneously form the deep trench in the substrate and remove the polysilicon layer. The multi-layer hard mask structure is removed.
摘要:
A method for fabricating STI for semiconductor device. The method includes the following steps. A trench is formed on the semiconductor substrate, a liner oxide is formed on the bottom and sidewall of the trench, and then a liner nitride is formed on the liner oxide. The first oxide layer is deposited in the trench by high density plasma chemical vapor deposition. The first oxide layer is spray-etched to a predetermined depth, wherein the recipe of the spray etching solution is HF/H2SO4=0.3˜0.4. A second oxide layer is deposited to fill the trench by high density plasma chemical vapor deposition to form a shallow trench isolation structure.
摘要翻译:一种制造用于半导体器件的STI的方法。 该方法包括以下步骤。 在半导体衬底上形成沟槽,在沟槽的底部和侧壁上形成衬里氧化物,然后在衬里氧化物上形成衬里氮化物。 第一氧化物层通过高密度等离子体化学气相沉积沉积在沟槽中。 将第一氧化物层喷雾刻蚀至预定深度,其中喷雾蚀刻溶液的配方为HF / H 2 SO 4 = 0.3〜0.4。 沉积第二氧化物层以通过高密度等离子体化学气相沉积填充沟槽以形成浅沟槽隔离结构。
摘要:
A method and an apparatus for drying a semiconductor wafer. The semiconductor wafer is first dipped in a liquid with a volatility higher than water and which is miscible with water. The dipped semiconductor wafer is then delivered in an IPA dryer to carry out the drying process. The drying process includes evaporating isopropyl alcohol to obtain a vapor and condensing the IPA vapor on the surface of the semiconductor wafer. The IPA is heated and vaporized by a hot plate disposed at the bottom of the IPA dryer. The condenser is mounted on the inner peripheral surface of the IPA dryer and surrounds the semiconductor wafer, which is supported by a holder.
摘要:
A trench MOS structure is disclosed. The trench MOS structure includes a substrate, an epitaxial layer, a doping well, a doping region and a trench gate. The substrate has a first conductivity type, a first side and a second side opposite to the first side. The epitaxial layer has the first conductivity type and is disposed on the first side. The doping well has a second conductivity type and is disposed on the epitaxial layer. The doping region has the first conductivity type and is disposed on the doping well. The trench gate is partially disposed in the doping region. The trench gate has a bottle shaped profile with a top section smaller than a bottom section, both are partially disposed in the doping well. The bottom section of two adjacent trench gates results in a higher electrical field around the trench MOS structures.
摘要:
A MOS test structure is disclosed. A scribe line region is disposed on a substrate which has a first side and a second side opposite to the first side. An epitaxial layer is disposed on the first side, the doping well is disposed on the epitaxial layer and the doping region is disposed on the doping well. A trench gate of a first depth is disposed in the doping region, in the doping well and in the scribe line region. A conductive material fills the test via which has a second depth and an isolation covering the inner wall of the test via and is disposed in the doping region, in the doping well, in the epitaxial layer and in the scribe line region, to electrically connect to the epitaxial layer so that the test via is capable of testing the epitaxial layer and the substrate together.
摘要:
A trench MOS structure is provided. The trench MOS structure includes a substrate, an epitaxial layer, a trench, a gate isolation, a trench gate, a guard ring and a reinforcement structure within the guard ring. The substrate has a first conductivity type, a first side and a second side opposite to the first side. The epitaxial layer has the first conductivity type and is disposed on the first side. The trench is disposed in the epitaxial layer. The gate isolation covers the inner wall of the trench. The trench gate is disposed in the trench and has the first conductivity type. The guard ring has a second conductivity type and is disposed within the epitaxial layer. The reinforcement structure has an electrically insulating material and is disposed within the guard ring.
摘要:
A post-CMP wafer cleaning apparatus includes a chamber; a plurality of rollers adapted to hold and rotate a wafer within the chamber; at least one brush adapted to scrub a surface of the wafer to be cleaned; and a liquid spraying device adapted to spray a liquid on the wafer, the liquid spraying device comprising two spray bars jointed together via a joint member.
摘要:
A method for obtaining a layout design for an existing integrated circuit, in which, an integrated circuit die is polished with a tilt angle to form an inclined polished surface and one or more images of the inclined polished surface are obtained. The images may be overlapped directly, or the image or the images may be utilized to provide information to obtain a layout design comprising at least one repeating unit structure of the layout structure.
摘要:
A method of forming conductive pattern is provided. A seeding layer is formed on an underlayer. By using an energy ray, an irradiation treatment is performed on a portion of a surface of the seeding layer. The seeding layer thus includes a plurality of irradiated regions and a plurality of unirradiated regions. A conversion treatment is performed on the irradiated regions of the seeding layer. A selective growth process is performed, so as to form a conductive pattern on each unirradiated region of the seeding layer. The irradiated regions of the seeding layer are removed, so that the conductive patterns are insulated from each other.